a2 United States Patent

US009183406B2

(10) Patent No.: US 9,183,406 B2

England et al. 45) Date of Patent: *Nov. 10, 2015
(54) SAVING AND RETRIEVING DATA BASED ON (56) References Cited
PUBLIC KEY ENCRYPTION
U.S. PATENT DOCUMENTS
(75) Inventors: Paul England, Bellevue, WA (US); 4.817.140 A 3/1989 Chandra ef al
Marcus Peinado, Bellevue, WA (US) 4:827:508 A 5/1989 Sh:;_lr actal
4,908,861 A 3/1990 Brachtl et al.
(73) Assignee: Microsoft Technology Licensing, LL.C, 4,969,189 A 11/1990 Ohta et al.
Redmond, WA (US) 4977.594 A 12/1990 Shear
5,007,082 A 4/1991 Cummins
(*) Notice: Subject to any disclaimer, the term of this g’ggg’g?g ﬁ g;}gg} ‘;%};naion ctal.
patent is extended or adjusted under 35 5.140.634 A 8/1992 Guillou et al.
U.S.C. 154(b) by O days. (Continued)
This patent is subject to a terminal dis-
claimer. FOREIGN PATENT DOCUMENTS
(21) Appl. No.: 13/012,573 CA 2425010 1072003
CA 2425006 6/2012
(22) Filed: Jan. 24, 2011 (Continued)
OTHER PUBLICATIONS
(65) Prior Publication Data
US 2011/0154057 Al Tun, 23, 2011 ;?j::ﬁ:;lp;rr;f’c;f?l%ﬁa (2)(;1(;1::1116 Signature and Broadcast Authen-
(Continued)
Related US. Application Data Primary Examiner — David Garcia Cervetti
(63) Continuation of application No. 10/407,117, filed on (74) Attorney, Agent, or Firm — Timothy Churna; Kate
Apr. 4, 2003, now Pat. No. 7,890,771. Drakos; Micky Minahs
(60) Provisional application No. 60/373,505, filed on Apr. (57) ABSTRACT
17, 2002. In accordance with certain aspects, data is received from a
(51) Int.ClL calling program. Ciphertext that includes the data is gener-
GO6F 21/00 (2013.01) ated, using public key encryption, in a manner that allows the
GOG6F 21/62 (2013.01) data to be obtained from the ciphertext only if one or more
(52) US.Cl conditions are satisfied. In accordance with another aspect, a
CPC) GOGF 21/6218 (2013.01) bit string is received from a calling program. Data in the bit
5% Field fCl """ ﬁt """ S h ’ string is decrypted using public key decryption and returned
(58) CII(:C ol Llassilication Searc GOGF 21/6218 to the calling program only if one or more conditions included

USPC 713/189, 193
See application file for complete search history.

in the bit string are satisfied.

20 Claims, 9 Drawing Sheets

36
4 ~
- 362
RECEIVE SECRET TO BE SEALED FROM CALLER
. ¢ 4
(" UsE PuBLIC KEY ENCRYPTION TO ENCRYPT) 364
/'

SECRET SO THAT THE SECRET CAN ONLY BE
(RETRIEVED BY A PARTICULAR TARGET PROGRAM(S)

v

- ™
RETURN CIPHERTEXT (ENCRYPTED SECRET) TO
CALLER

- 366

US 9,183,406 B2

Page 2
(56) References Cited 6,032,257 A 2/2000 Olarig et al.
6,038,551 A 3/2000 Barlow et al.
U.S. PATENT DOCUMENTS 6,073,124 A 6/2000 Krishnan et al.
6,092,189 A 7/2000 Fisher et al.
5276311 A 1/1994 Hennige 6,105,137 A 8/2000 Graunke
5,283,830 A 2/1994 Hinsley et al. 6,112,181 A 8/2000 Shear et al.
5335334 A 8/1994 Takahashi et al. 6,118,873 A 9/2000 Lotspiech et al.
5339403 A 8/1994 Parker 6,138,119 A 10/2000 Hall et al.
5340643 A 0/1994 Cox 6,148,083 A 11/2000 Fieres
5365580 A 11/1994 Gutowitz 6,148387 A 11/2000 Galasso et al.
5375,169 A * 12/1994 Secheidtetal. 713/171 6,148402 A 11/2000 Campbell
5,404,403 A * 4/1995 Brightetal. ..., 380/277 6,157,721 A 12/2000 Shear et al.
5,410,598 A 4/1995 Shear 6,175917 Bl 1/2001 Arrow et al.
5418947 A 5/1995 Hsu et al. 6,185,678 Bl 2/2001 Arbaugh
5,421,006 A 5/1995 Jablon et al. 6,185,683 Bl 2/2001 Ginter et al.
5,448,716 A 9/1995 Hardell et al. 6,189,100 B1 2/2001 Barr
5473,600 A 12/1995 Grimonprez et al. 6,189,103 Bl ~ 2/2001 Nevarez et al.
5,473,692 A 12/1995 Davis 6,212,636 Bl 4/2001 Boyle et al.
5,483,649 A 1/1996 Kuznetsov et al. 6,223,284 Bl 4/2001 Novoa et al.
5,491,827 A 2/1996 Holtey 6,229,894 Bl 5/2001 Van Oorschot et al.
5,530,749 A 6/1996 FEaster et al. 6,230,285 Bl 52001 Sadowsky et al.
5,530,758 A 6/1996 Marino, Ir. et al. 6,237,786 Bl 5/2001 Ginter et al.
5,544,246 A 8/1996 Mandelbaum et al. 6,240,185 Bl 5/2001 Van Wie et al.
5557518 A 9/1996 Rosen 6,253,193 Bl 6/2001 Ginter et al.
5:557:765 A 9/1996 Lipner 6,263,431 Bl 7/2001 Lovelace et al.
5,559,957 A 9/1996 Balk 6,263,445 Bl 7/2001 Blumenau
5,615,263 A 3/1997 Takahashi 6,192,473 Bl 82001 Stwart
5,623,637 A 4/1997 Jones et al. 6,272,629 Bl 82001 Stewart
5.638.446 A 6/1997 Rubin 6,292,569 Bl 9/2001 Shear et al.
5654746 A 8/1997 McMullan ef al. 6,308,317 Bl 10/2001 Wilkinson et al.
5664016 A 0/1997 Prencel 6,327,652 Bl 12/2001 England et al.
5671280 A 9/1997 Rosen 6,327,660 Bl 12/2001 Patel
5,673,319 A 9/1997 Bellare et al. 6,330,588 Bl 12/2001 Freeman
5721781 A 2/1998 Deo et al. 6,335,972 Bl 1/2002 Chandersekaran et al.
5724425 A 3/1998 Chang et al. 6,338,139 Bl 1/2002 Ando et al.
5,724,527 A 3/1998 Karnik et al. 6,339,830 B1* 12002 Seeetal. ... 726/15
5,745,886 A 4/1998 Rosen 6,341,373 Bl 1/2002 Shaw
5757919 A 5/1998 Herbert 6,351,536 Bl 2/2002 Sasaki
5,778,069 A 7/1998 Thomlinson et al. 6,363,486 Bl 3/2002 Knapton, III
5.796.824 A 8/1998 Hasebe et al. 6,363,488 Bl 3/2002 Ginter et al.
5:802:592 A 9/1998 Chess et al. 6,367,012 Bl 4/2002 Atkinson et al.
5,812,662 A 9/1998 Hsu et al. 6,381,741 Bl 4/2002 Shaw
5,812,980 A 9/1998 Asai 6,389,402 Bl 5/2002 Ginter
5,825,876 A * 10/1998 Peterson, Jt.cccooooornn.. 705/52 6,389,537 Bl 5/2002 Davis et al.
5,841,869 A 11/1998 Merkling et al. 6,401,208 B2~ 6/2002 Davis et al.
5,844,986 A 12/1998 Davis 6,425,011 B1* 7/2002 Otanietal. 709/225
5,857,020 A * /1999 Peterson, Jt.cccooooeennnn.. 705/52 6,427,140 Bl 7/2002 Ginter et al.
5,860,099 A 1/1999 Milios et al. 6,449,367 B2 9/2002 Van Wie et al.
5:870’467 A 2/1999 Imaj et al. 6,453,334 Bl 9/2002 Vinson et al.
5,872:847 A 2/1999 Boyle et al. 6,470,085 B1* 10/2002 Uranakaetal. 380/231
5,892,900 A * 4/1999 Ginter et al.ccc...... 726/26 6,477,252 Bl 11/2002 Faber et al.
5.892.902 A 4/1999 Clark 6,477,648 B1 11/2002 Schell et al.
5:892:904 A 4/1999 Atkinson et al. 6,480,961 B2 11/2002 Rajasekharan et al.
5,910,987 A 6/1999 Ginter et al. 6,557,104 B2 4/2003 Vuetal.
5,915,019 A 6/1999 Ginter et al. 6,560,706 Bl 52003 Carbajal et al.
5’917’912 A 6/1999 Ginter et al. 6,574,609 Bl 6/2003 Downs et al.
5919257 A 7/1999 Trostle 6,609,199 Bl 82003 DeTreville
5:920’861 A 7/1999 Hall et al. 6,640,304 B2 10/2003 Ginter et al.
5,933:498 A 8/1999 Schneck et al. 6,675,298 B1* 1/2004 Folmsbee 713/190
5,937,063 A 8/1999 Davis 6,681,214 Bl 1/2004 Doljack
5:940:5()4 A 8/1999 Griswold 6,694,025 Bl 2/2004 Epstein et al.
5,943,422 A 8/1999 Van Wie et al. 6,735,696 Bl 5/2004 Hannah
5,944,821 A 8/1999 Angelo 6,745,936 Bl 6/2004 Movalli et al.
5949876 A 9/1999 Ginter et al. 6,754,815 Bl 6/2004 Ellison et al.
5:953:502 A 9/1999 Helbig, Sr. 6,757,831 B1* 6/2004 Folmsbee 713/190
5.058.050 A 9/1999 Griffin et al. 6,772,133 Bl 8/2004 Kambayashi et al.
5063980 A 10/1999 Coulier of al. 6,775,655 Bl 82004 Peinado et al.
5074546 A 10/1999 Anderson 6,820,063 Bl 11/2004 England et al.
5,978,484 A * 11/1999 Appersonetal. 705/54 6,857,071 Bl1* 2/2005 Nakaeoo... 713/156
5,982,891 A 11/1999 Ginter et al. 6,901,385 B2* 5/2005 Okamoto etal. 705/51
5,991,406 A 11/1999 Lipner et al. 6,950,941 Bl 9/2005 Leeetal
5991,876 A 11/1999 Johnson et al. 6,983,371 Bl 1/2006 Hurtado et al.
5,995,625 A * 11/1999 Sudiaetal.cco....... 705/51 7,007,025 B1* 2/2006 Nasonetal.o.ccooorrvvennnn. /1
6,006,328 A * 12/1999 Drakecoocccovvrrrrrneenn. 726/23 7,017,188 Bl 3/2006 Schmeidler et al.
6,006,332 A 12/1999 Rabne et al. 7047411 B1* 52006 DeMello et al. 713/176
6,009,274 A 12/1999 Fletcher et al. 7,047.414 B2 5/2006 Wheeler et al.
6,009,401 A 12/1999 Horstmann 7,062,471 Bl 6/2006 Matsuyama et al.
6,026,166 A 2/2000 LeBourgeois 7,073,073 B1* 7/2006 Nonakaetal. 713/193
6,028,933 A 2/2000 Heer et al. 7,079,649 Bl 7/2006 Bramhill et al.

US 9,183,406 B2

Page 3
(56) References Cited 2003/0177391 Al* 9/2003 Ofeketal. ... 713/201
2003/0188179 Al 10/2003 Challener et al.
U.S. PATENT DOCUMENTS 2004/0003273 Al 1/2004 Grawrock et al.
2004/0052377 Al 3/2004 Mattox et al.
7,103,574 Bl 0/2006 Peinado et al. 2004/0093506 Al 5/2004 Grawrock et al.
7,103,771 B2 9/2006 Grawrock 2004/0103202 Al* 5/2004 Hildebrand etal. 709/229
s ; 2004/0111600 Al 6/2004 Kaler et al.
Z;};gjﬁ; Eﬁ 1%882 %ﬁﬁ;gf;em """"""" 7171140 2004/0117625 Al 6/2004 Grawrock
7,142,676 Bl 11/2006 Hillier et al. 2004/0172544 Al* 9/2004 Luoetal. 713/189
7143289 B2* 11/2006 Denning etal. 713/168 2004/0230797 Al* 112004 Ofeketal ..ccooooorrrrrenn 713/168
; 2005/0010818 Al 1/2005 Paff et al.
Z;}gﬁ;ﬁ;‘g E} %88; Eﬁ;ﬁﬁ;@?@l 2005/0138111 Al* 6/2005 Atonetal ... 709/201
7263188 B2* /2007 Kohno 380/231 2005/0149486 Al* 7/2005 Nasonetal. .. o 70771
s 2005/0187674 Al 8/2005 Ando
Zﬁgi;%é Ei 1%88; Eﬁ;liﬁl' """""""""""" 726126 2005/0204165 Al* 9/2005 Nasonetal.co....... 713/201
7,333,615 Bl 2/2008 Jarboe et al. 2005/0256806 Al 11/2005 Tien et al.
; 2007/0067624 Al 3/2007 England et al.
;%?ﬁg? Eﬁ* %882 %45;2:? ;Th '''''''''''''''' 713/193 2007/0086588 Al 4/2007 England et al.
7,487,365 B2 2/2009 England et al. 2007/0088946 Al 4/2007 England et al.
75209019 B2 52009 Lampson ct al. 2007/0088949 Al 4/2007 England et al.
7,543,336 B2 6/2009 Lampson et al. 2007/0104329 Al 5/2007 England et al.
7,587,589 B2 9/2009 England et al. 2011/0119500 Al 5/2011 England
7752456 B2 7/2010 England 2011/0119501 Al 52011 England
PT6S39T B2 72010, England 20110119505 AL 32011 Fneland
7,769,174 B2 8/2010 Cho et al. nglan
7,890,771 B2* 2/2011 Englandetal. 713/193
8,589,701 B2 11/2013 England et al. FOREIGN PATENT DOCUMENTS
8,601,286 B2 12/2013 England et al.
8,621,243 B2 12/2013 England et al. CA 2425010 11/2013
8,683,230 B2 3/2014 England et al. EP 0695985 2/1996
2001/0044901 Al 11/2001 Grawrock EP 0789361 8/1997
2002/0007452 Al 1/2002 Traw et al. EP 1132828 9/2001
2002/0018566 Al* 2/2002 Kawatsuraetal. 380/232 GB 2260629 4/1993
2002/0057799 Al* 5/2002 Kohno 380/228 P 06318167 11/1994
2002/0069365 Al 6/2002 Howard et al. P 08137686 5/1996
2002/0071565 Al 6/2002 Kurn et al. P 09251426 9/1997
2002/0076042 Al 6/2002 Sandhu et al. P 1040172 2/1998
2002/0077985 Al* 6/2002 Kobataetal.c...co..... 705/51 P 11265317 9/1999
2002/0077986 Al* 6/2002 Kobataetal.co..... 705/52 P 2000260121 9/2000
2002/0078361 Al* 6/2002 Giroux et al. ... 713/183 P 2000311114 11/2000
2002/0082997 Al* 6/2002 Kobata et al. .. 705/51 P 2001209583 8/2001
2002/0085714 Al* 7/2002 Inohaetal. 380/201 P 2001282375 10/2001
2002/0094089 Al 7/2002 Kamiya et al. P 2001318787 11/2001
2002/0094111 Al* 7/2002 Pucheketal. 382/115 P 2002049499 2/2002
2002/0101995 Al 8/2002 Hashimoto et al. P 2003271254 9/2003
2002/0106086 Al 8/2002 Kamiya et al. P 5060652 8/2012
2002/0107803 Al 8/2002 Lisanke et al. WO WO0-9938070 7/1999
2002/0120936 Al 8/2002 Del Beccaro et al. WO WO-0219609 3/2002
2002/0136407 Al* 9/2002 Denningetal. 380/258
2002/0138442 Al* 9/2002 Horietal.coccooovnnnn. 705/59 OTHER PUBLICATIONS
2002/0150243 Al 10/2002 Craft et al.
2002/0152173 Al 10/2002 Rudd “Department of Defense Trusted Computer System Evaluation Cri-
2002/0164022 Al 11/2002 Strasser et al. teria”, Department of Defense Standard, (Dec. 1985),pp. 1-79.
2002/0170053 Al ~ 11/2002 Peterka et al. “Final Office Action”, U.S. Appl. No. 10/406,861, (Aug. 17,
200310186847 A1+ 132002 Bischortetal ol sy 2007 pages
2002 ischoff et w1 T
2003/0004888 Al* 12003 Kambayashi et al. .. 705/59 ngil Office Action”, U.S. Appl. No. 10/407,117, (Jul. 12, 2007), 18
" .
%883;88?22% N %883 iﬁ?%:ﬁlﬂj """""""" TI93 CEinal Office Action”, U.S. Appl. No. 10/430,994, (Jul. 10, 2007),21
2003/0018906 Al* 1/2003 Smithetal. 713/189 pages.
2003/0028592 Al* 2/2003 Oohoetal.cc..c....... 709/203 “Final Office Action”, U.S. Appl. No. 11/557,595, (Sep. 17, 2009),6
2003/0031320 Al 2/2003 Fan et al. pages.
2003/0051149 Al* 3/2003 Robertccccoovvvenrrnen. 713/189 “Final Office Action”, U.S. Appl. No. 09/227,568, (Aug. 13, 2002),5
2003/0056107 Al 3/2003 Cammack et al. Pages.
2003/0056112 Al 3/2003 Vinson et al. “Final Office Action”, U.S. Appl. No. 09/266,207, (Feb. 9, 2005),22
2003/0072450 Al 4/2003 Maggenti Pages.
2003/0079133 Al* 4/2003 Breiteretal. 713/182 s o
5003/0084258 Al) /2003 Tashiro Pl;g:;l Office Action”, U.S. Appl. No. 10/430,999, (Jun. 14,2007),27
03010734 AL* G203 Hishenseal. 7071 Tirs Office Acion” Chine Applcation No. 2007101529614,
B H .0, s .
20030108202 A1 62003 Clapper 1o “Forsign Notee of Rfcton”, Jpanee Pt Appn No. 200-
2003/0110130 Al* 6/2003 Pelletierccoocorvvvenn..... 705/50 ,(Sep. 15, ,13 pages.
2003/0110131 Al* 6/2003 Alainetal. ..ovvevvrvveiinnn. 705/51 “Foreign Office Action”, Application Serial No. 10-2003-0024377,
2003/0126454 Al 7/2003 Glew et al. (Feb. 22, 2010),7 pages.
2003/0163711 Al 8/2003 Grawrock “Foreign Office Action”, Application Serial No. 2003-113503, (Sep.
2003/0174838 Al* 9/2003 Bremerc.oooon... 380/270 15, 2009),14 pages.
2003/0177374 Al* 9/2003 Yung et al. ... 713/189 “Foreign Office Action”, Application Serial No. 200610059571.8,
2003/0177383 Al* 9/2003 Ofeketal.c........ 713/200 (Feb. 20, 2009),7 pages.

US 9,183,406 B2
Page 4

(56) References Cited
OTHER PUBLICATIONS

“Foreign Office Action”, Application Serial No. 200610059598.7,
(Feb. 20, 2009),9 pages.

“Foreign Office Action”, Application Serial No. 200710152963 .3,
(Mar. 1, 2010),21 pages.

“Foreign Office Action”, Chinese Application No. 03131208.X,
(Nov. 4, 2005),11 pages.

“Foreign Office Action”, Japanese Application No. 2003-113502,
(Oct. 26, 2010),7 pages.

“Foreign Office Action”, Japanese Application No. 2003-113503,
(Oct. 26, 2010),7 pages.

“Foreign Office Action”, Korean Application No. 10-2003-24377,
(Sep. 30, 2010),9 pages.

“Handbook of Applied Cryptography”, CRC Press Series on Discrete
Mathematics and Its Applications, XP-002265828, (1997),pp. 33,
493, 509, 510, 546-552.

“Internet Security: SanDisk and New Microsoft Technology Provide
Copy Protected Music for Internet Music Player Market”, (Product
Announcement) Edge: Work-Group Computing Report, (Apr. 19,
1999),2 Pages.

“Microsoft Press Computer Dictionary”, Third Edition, published by
Microsoft Press, Copyright 1997,(1997),pp. 27, 34, 341.

“Non Final Office Action”, U.S. Appl. No. 11/557,595, (Feb. 25,
2009),6 pages.

“Non Final Office Action”, U.S. Appl. No. 10/406,861, (Jan. 10,
2007),13 pages.

“Non Final Office Action”, U.S. Appl. No. 10/407,117, (Apr. 10,
2009),26 pages.

“Non Final Office Action”, U.S. Appl. No. 10/407,117, (Feb. 7,
2008),6 pages.

“Non Final Office Action”, U.S. Appl. No. 10/430,994, (Jan. 24,
2007),19 pages.

“Non Final Office Action”, U.S. Appl. No. 10/430,994, (Jun. 16,
2005),6 pages.

“Non Final Office Action”, U.S. Appl. No. 10/431,011, (Jun. 1,
2007),6 pages.

“Non Final Office Action”, U.S. Appl. No. 10/431,011, (Jun. 30,
2006),19 pages.

“Non Final Office Action”, U.S. Appl. No. 11/557,581, (Feb. 13,
2009),21 pages.

“Non Final Office Action”, U.S. Appl. No. 10/407,117, (Sep. 18,
2008),28 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/407,117, (Nov. 25,
2009),6 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/407,117, (Dec. 11,
2006),16 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/407,117, (Jun. 24,
2010),6 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/430,994, (Aug. 9,
2006),17 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/430,994, (Dec. 14,
2005),6 pages.

“Non-Final Office Action”, U.S. Appl. No. 10/431,011, (Nov. 27,
2006),9 pages.

“Non-Final Office Action”, U.S. Appl. No. 11/557,581, (Oct. 20,
2009),6 pages.

“Non-Final Office Action”, U.S. Appl. No. 11/557,595, (Feb. 25,
2009),6 pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Dec. 4,
2001),7 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Mar. 27,
2006),7 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Jun. 3,
2005),4 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Jun. 18,
2003),6 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Aug. 9,
2004),5 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/227,568, (Sep. 22,
2005),4 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/266,207, (Jan. 29,
2004),16 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/266,207, (Nov. 1,
2005),12 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/266,207, (Apr. 25,
2006),9 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/266,207, (Jul. 19,
2004),20 Pages.

“Non-final Office Action”, U.S. Appl. No. 09/266,207, (Aug. 13,
2003),12 Pages.

“Non-final Office Action”, U.S. Appl. No. 10/430,999, (Jan. 24,
2008),9 Pages.

“Non-final Office Action”, U.S. Appl. No. 10/430,999, (Dec. 5,
2006),22 Pages.

“Non-final Office Action”, U.S. Appl. No. 10/430,999, (Jul. 12,
2006),22 Pages.

“Non-Final Office Action”, U.S. Appl. No. 10/431,011, (Jun. 1,
2007),6 pages.

“Notice of Allowance”, U.S. Appl. No. 10/407,117, (Oct. 6, 2010),6
pages.

“Notice of Allowance”, U.S. Appl. No. 11/557,581, (Apr. 6, 2010),8
pages.

“Notice of Allowance”, U.S. Appl. No. 11/557,595, (Mar. 11, 2010),4
pages.

“Notice of Allowance”, U.S. Appl. No. 11/557,641, (Jun. 2, 2009),6
pages.

“Notice of Preliminary Rejection”, Korean Application No. 10-2003-
0024374, (Mar. 26, 2010),5 Pages.

“Notice on Grant of Patent Rights”, Application Serial No.
200610059571.8, (Jun. 19, 2009),4 pages.

“Notice on Grant of Patent”, Application Serial No. 200610059598.
7, (Jun. 19, 2009),4 pages.

“Phoenix Technologies Partners with Secure Computing in Enter-
prise Security Marketplace”, Business Wife Courtesy of Dialog Text
Search, (Jul. 12, 2001),2 pages.

“Restriction Requirement”, U.S. Appl. No. 10/406,861, (Jan. 10,
2007),13 pages.

“Restriction Requirement”, U.S. Appl. No. 10/407,117, (Sep. 14,
2006),4 pages.

“Trusted Computing Group (TCG) Main Specification Version 1.1a”,
Retrieved from http://www.trustedpc.org, Trusted Computing Plat-
form Alliance, (Sep. 2001),332 pages.

“Trusted Computing Platform Alliance Main Specification Version
1.1b”, Trusted Computing Group, Available at <http://www.
trustedcomputinggroup.org/files/resource_ files/64795356-1D09-
3519- ADAB12F595B5FCDF/TCPA__Main_ TCG__Architecture_
vl _ lbpdf>(Feb. 22, 2002),25 pages.

Abadi, M. et al., “Authentication and Delegation with Smart-cards”,
Science of Computer Programming, vol. 21, Issue 2 (Oct. 1993),
Available at: <http://www.hpl.hp.com/techreports/Compaq-DEC/
SRC-RR-67.html>,(Jul. 30, 1992),30 pages.

Arbaugh, et al., “A Secure and Reliable Bootstrap Architecture”,
IEEE 1997, Distributed Systems Laboratory, Philadelphia, PA, 1997,
(1997),pp. 65-71.

Arbaugh, William et al., “Automated Recovery in a Secure Bootstrap
Process”, Network and Distributed System Security Symposium,
Internet Society, (1998),16 pages.

Aucsmith, David “Tamper Resistent Softward: An Implementation”,
Lecture Notes in Computer Science, 1996, vol. 1174, (1996),pp.
317-333.

Barak, Boaz et al., “On the (Im)possbility of Obfuscating Programs”,
J. Kilian(Ed.): CRYPTO 2001, LNCS 2130, (2001),pp. 1-18.
Bellare, Mihir et al., “Keying Hash Functions for Message Authen-
tication”, Advances in Cryptology—CRYPTO, 1996, LNCS 1109,
(1996),pp. 1-15.

Blaze, Matt “A Cryptographic File System for Unix”, Conference on
Computer and Communications Security, Proceedings of the 1st
ACM conference on Computer and communications security, ACM,
pp. 9-16, 1993,(1993),8 pages.

Clark, Paul C., et al., “BITS: A Smartcard Protected Operating Sys-
tem”, Communications of the ACM, vol. 37, Issue 11, Available at
<http://portal.acm.org/ft_ gateway.cfm?id=18837 1&type=pdf&

US 9,183,406 B2
Page 5

(56) References Cited
OTHER PUBLICATIONS

coll=GUIDE&dI=GUIDE&CFID=59665731&
CFTOKEN=23983236>,(Nov. 1994),pp. 66-70, 94.

Coffey, Tom et al., “Non-Repudiation with Mandatory Proof of
Receipt”, ACM SIGCOMM Computer Communication Review
archive vol. 26, Issue 1, (Jan. 1996),pp. 6-17.

Davida, George I., et al., “Defending Systems Against Viruses
through Cryptographic Authentication”, IEEE Computer Society
Symposium on Security and Privacy, (1989),pp. 312-318.

England, Paul et al., “Authenticated Operation of Open Computing
Devices”, In Proceedings of 7th Australian Conference on Informa-
tion Security and Privacy, (Jul. 2002),16 pages.

Feiertag, Richard J., et al., “The Foundations of a Provably Secure
Operating System (PSOS)”, California Proceedings of the National
Computer Conference AFIPS Press, Available at <http://www.csl.sri.
com/~neumann/psos.pdf>,(1979),pp. 1-9.

Housley, R. “Internet X.509 Public Key Infrastructure Certificate and
CRL Profile”, (Jan. 1999),3 pages.

Itoi, Naomaru et al., “Personal Secure Booting”, ACISP 2001, LNCS
2119, (2001),pp. 130-144.

Kuhn, Markus “The TrustNo 1 Cryptoprocessor Concept”, Technical
Report, Purdue University, (Apr. 30, 1997),6 pages.

Lampson, Butler et al., “Authentication in Distributed Systems:
Theory and Practice”, Digital Equipment Corporation ACM Trans-
actions on Computer Systems, vol. 10, No. 4, (Nov. 1992),pp. 265-
310.

Lampson, Butler W., et al., “Protection”, Fifth Princeton Symposium
on Information Sciences and Systems, Princeton University, Mar.
1971, reprinted in Operating Systems Review, 8, Jan. 1, 1974, (Mar.
1971),pp. 18-24.

McKenkie, Matt “Seybold Report on Internet Publishing”, vol. 1, No.
4, p. 6(9), (Dec. 1996),12 pages.

Muller-Schloer, Christian “A Microprocessor-based Cryptoproces-
sor”, IEEE Micro, vol. 3 Issue 5, (Oct. 31, 1983),pp. 5-15.

Murphy, Kathleen et al., “Preventing Piracy: Authorization Software
May Ease Hollywood’s Fear of the Net”, Internet World Magazine,
(Apr. 1, 2000),3 Pages.

Schneier, “Applied Cryptography”, Protocols Alogrith and Source
Code in C, (1996),pp. 574-577.

Smith, Sean W., et al., “Building a High-Performance, Program-
mable Secure Coprossor”, Computer Networks, vol. 31, No. 8, (Apr.
1999),pp. 831-860.

Smith, Sean W., et al., “Trusting Trusted Hardware: Towards a For-
mal Model for Programmable Secure Coprocessors”, Third USENIX
Workshop on Electronic Commerce, (1998),pp. 83-98.

Smith, Sean W., et al., “Using a High-Performance, Programmable
Secure Coprocessor”, R. Hirschfeld (Ed.): FC’98, LNCS 1465,
(1998),pp. 73-89.

Stallings, “Cryptography and Network Security: Principles and Prac-
tice”, 2nd Edition, (1992),pp. 186-187.

Stallings, “Cryptography and Network Security: Principles and Prac-
tice”, Prentice Hall, 2nd Edition, (1999),pp. 143-147.

Suh, G. E., et al., “AEGIS: Architecture for Tamper-Evident and
Tamper-Resistent Processing”, MIT Laboratory for Computer Sci-
ence, XP-002265826, (2003),pp. 1-16.

Yee, “Using Secure Coprocessors”, School of Computer Science,
Carnegie Mellon University, (1994),104 pages.

Young, “Facing an Internet Security Minefield Microsoft Hardens
NT Server’s Defenses”, Windows Watcher, Sep. 12, 1997, vol. 7,
Issue 9, pl, 6p, 1 chart, (Sep. 12, 1997),8 Pages.

“Final Office Action”, U.S. Appl. No. 13/015,402, (Dec. 29,2011), 8
pages.

“Foreign Notice of Allowance”, Japanese Application No. 2011-
158404, (Jan. 20, 2012), 6 pages.

“Foreign Office Action”, Canadian Application No. 2425010, (Dec.
15, 2011), 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,403, (Mar. 2,
2012), S pages.

“Final Office Action”, U.S. Appl. No. 13/015,360, (Mar. 13,2012),13
pages.

“Final Office Action”, U.S. Appl. No. 13/015,440, (May 7, 2012),10
pages.

“Foreign Office Action”, Japanese Application No. 2011-280456,
(Apr. 13, 2012),10 pages.

“Foreign Office Action”, Canadian Application No. 2425006, (May
2,2011),3 pages.

“Foreign Office Action”, Chinese Application No. 200710152961 4,
(May 10, 2011),7 pages.

“Foreign Office Action”, Chinese Application No. 200710152963 .3,
(May 6, 2011),7 pages.

“Foreign Office Action”, Japanese Application No. 2010-057733,
(Apr. 19, 2011),4 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,402, (Jul. 13,
2011),9 pages.

“Foreign Notice of Allowance”, Canadian Application No. 2425006,
(Nov. 3, 2011), 1 page.

“Foreign Office Action”, Chinese Application No. 200710152961 4,
(Aug. 25, 2011), 10 pages.

“Foreign Office Action”, Japanese Application No. 2011-158404,
(Oct. 21, 2011), 4 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,360, (Sep. 16,
2011), 9 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,440, (Nov. 15,
2011), 8 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,360, (Jan. 3,
2013), 9 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,440, (Feb. 5,
2013), 7 pages.

“Final Office Action”, U.S. Appl. No. 13/015,403, (Sep. 13,2012), 8
pages.

“Foreign Notice of Allowance”, Japanese Application No. 2011-
280456, (Jul. 31, 2012), 6 pages.

“Foreign Office Action”, Canadian Application No. 2425010, (Nov.
9,2012), 3 pages.

“Foreign Office Action”, Chinese Application No. 200710152961 4,
(Jun. 5, 2012), 6 pages.

“Non-Final Office Action”, U.S. Appl. No. 13/015,402, (Nov. 13,
2012), 10 pages.

“Foreign Notice of Allowance”, Canadian Application No.
2,425,010, (Aug. 1, 2013), 1 Page.

“Notice of Allowance”, U.S. Appl. No. 13/015,402, (Aug. 20, 2013),
5 pages.

“Final Office Action”, U.S. Appl. No. 13/015,360, (Sep. 10, 2013), 6
pages.

“Notice of Allowance”, U.S. Appl. No. 13/015,360, (Oct. 25, 2013),
5 pages.

Bloom, et al., “Copy Protection for DVD Video”, In Proceedings of
the IEEE, vol. 87, Issue: 7, Jul. 1999, pp. 1267-1276.

“Foreign Office Action”, CA Application No. 2,778,805, Feb. 20,
2014, 2 pages.

“Foreign Office Action”, CA Application No. 2,778,805, Aug. 14,
2014, 2 pages.

“Foreign Notice of Allowance”, CA Application No. 2,778,805, Sep.
25,2014, 2 pages.

“Final Office Action”, U.S. Appl. No. 13/015,402, (May 7, 2013), 7
pages.

“Notice of Allowance”, U.S. Appl. No. 13/015,403, (Jul. 19,2013), 8
pages.

“Notice of Allowance”, U.S. Appl. No. 13/015,440, (Jul. 22, 2013), 5
pages.

* cited by examiner

U.S. Patent Nov. 10, 2015 Sheet 1 of 9 US 9,183,406 B2

100
102 104 106
\ Reauest [
PRINCIPAL GUARD RESOURCE(S)
) RESPONSE |

US 9,183,406 B2

Sheet 2 of 9

Nov. 10, 2015

U.S. Patent

8cl ocl
4 // //

304N0S3Y

d

vel N\ ¢cl N\ 0cl N\
N 4) 4 N 4
asvno IVdIONIYd | advND IVdIONIMd | a¥vN9 VdIONIEd
/ \. / - / \.
9 gl "l
JOV4YILN] JOVAHILN] JOV4YILN]
JF0INE3S 30IN3S JF0INE3S

U.S. Patent Nov. 10, 2015 Sheet 3 of 9 US 9,183,406 B2

200
N
RECEIVE SECRET TO BE SEALED |~ 202
FROM CALLER
w
) !

ENCRYPT SECRET SO THAT THE) 204
SECRET CAN ONLY BE RETRIEVED BY |
(A PARTICULAR TARGET PROGRAM(S) |

v

4 ™\
RETURN CIPHERTEXT (ENCRYPTED |~ 206

SECRET) TO CALLER

Fig. 3

250
s ™)
RECEIVE DATA TO BE STORED - 292
N y
v
e R
APPLY A SYMMETRIC CIPHER TO THE |~ 254
DATA
N y
v
e A
APPLY A MESSAGE AUTHENTICATION |~ 256
CobE (MAC) 1O THE DATA
N y
v
e A
RETURN MAC VALUE AND - 258
ENCRYPTED DATA TO CALLER
N y

Fig. 5

U.S. Patent

228

N
[

Nov. 10, 2015 Sheet 4 of 9

A

" RECEIVE CIPHERTEXT WITH \/ 297
ENCRYPTED DATA THAT CALLER
8 DESIRES TO RETRIEVE y
4 i ™
CHECK WHETHER CALLER IS |~ 224
ALLOWED TO RETRIEVE THE DATA
Ny _J

IS CALLER ALLOWED TO
RETRIEVE THE DATA?

US 9,183,406 B2

230

RETURN DECRYPTED

DATA TO CALLER

U.S. Patent

N
[en)

282

YES

Y

A

RETURN PLAINTEXT DATA
TO CALLER

Nov. 10, 2015 Sheet 5 of 9 US 9,183,406 B2
. ™
- 272
RECEIVE CIPHERTEXT AND MAC VALUE
. y
v
e ™
DECRYPT CIPHERTEXT TO GENERATE |~ 274
PLAINTEXT DATA
. Y
r L ™
APPLY A MESSAGE AUTHENTICATION 276
CobE (MAC) TO THE PLAINTEXT DATA 4
L 7O GENERATE A MAC VALUE
v
(" CHECK WHETHER GENERATED MAC) 278
VALUE IS EQUAL TO THE RECEIVED 4
L MAC VALUE)
280
Is GENERATED MAC
No
VALUE EQUAL TO THE RECEIVED
MAC VALUE?
284
A4
FAIL

U.S. Patent Nov. 10, 2015 Sheet 6 of 9 US 9,183,406 B2

300
~
302
RECEIVE INPUT DATA FROM CALLER 4
_J
\ 4
\
304
OBTAIN IDENTIFIER OF CALLER 4
)
\ 4
4 ™\
DIGITALLY SIGN COMBINATION OF INPUT DATA | - 306
AND IDENTIFIER OF CALLER
\Q _J
\ 4
- ™
- 308
RETURN DIGITAL SIGNATURE TO CALLER
. y
320
r ™\
- 322

RECEIVE DIGITAL SIGNATURE

\ v

(EXTRACT FROM THE DIGITAL SIGNATURE BOTH) 324
THE IDENTIFIER OF THE CALLER THAT QUOTED |

. AN INPUT VALUE AND THE INPUT VALUE)

EVALUATE THE IDENTIFIER OF THE CALLER TO \/ 326
DETERMINE HOW TO PROCEED WITH THE INPUT
VALUE

Fig. §

vy

U.S. Patent Nov. 10, 2015 Sheet 7 of 9 US 9,183,406 B2

(" RECEIVE CIPHERTEXT WITH) 342
B

ENCRYPTED DATA THAT CALLER

9 DESIRES TO RETRIEVE P

v

- a
CHECK WHETHER CALLER IS |~ 344

ALLOWED TO RETRIEVE THE DATA
A o

IS CALLER ALLOWED TO
RETRIEVE THE DATA?

348
Y Y

RETURN, TO CALLER,
DATA DECRYPTED USING FAIL
PuBLic KEY DECRYPTION

350

U.S. Patent Nov. 10, 2015 Sheet 8 of 9 US 9,183,406 B2

360
[A 362
RECEIVE SECRET TO BE SEALED FROM CALLER 4
N L _J
(" UsE PuBLIC KEY ENCRYPTION TO ENCRYPT \/ 364
SECRET SO THAT THE SECRET CAN ONLY BE
(RETRIEVED BY A PARTICULAR TARGET PROGRAM(S) |
7 ¢ ™\
RETURN CIPHERTEXT (ENCRYPTED SECRET) TO |~ 366
CALLER
o y
380
4 RECEIVE INPUT IDENTIFYING A TARGET \/ 382
PROGRAM(S) THAT SHOULD BE ABLE TO RETRIEVE
L A SECRET)
s x ™
384
GENERATE THE SECRET 4
L i J
(" ENCRYPT GENERATED SECRET SO THAT THE) 386
GENERATED SECRET CAN ONLY BE RETRIEVED BY |
L THE IDENTIFIED TARGET PROGRAM(S))
4 ™
RETURN CIPHERTEXT (ENCRYPTED SECRET) TO |~ 388
CALLER
o y

Feg. 1

U.S. Patent Nov. 10, 2015 Sheet 9 of 9 US 9,183,406 B2

400 - 418 -
4 422 REMOTE |
JICOMPUTING |
442 | DEVICE |
MONITOR ——J Mobpem =~ [EEEEEEDY =

UL AN

‘ [C300] 450 - | REMOTE
AN 458 —| APPLICATION

406 .| PROGRAMS

SYSTEM MEMORY

F OPERATING

NETWORK
496 VIDEO ADAPTER ADAPTER SYSTEM 42
SySTEM BUS APPLICATION
DAaTA MEDIA PROGRAMS 428
INTERFACES —
OTHER PROGRAM

LLLl

/”—*—\x 404 MODULES 430
N~

PROGRAM
DATA 432

OPERATING 426] | 416

S~ SYSTEM] i _1\|||
APPLICATION428 PROCESSING

PROGRAMS [UNIT - —_]

PROGRAM 430
MODULES 440 BIOS
PROGRAM 432

——_DATA A | 412 ROM
nosog

/O INTERFACES

A

T e \\) m -
PRINTER MOUSE' KEYBOARD OTHER DEVICE(S)

446 - 436 434 ?‘? 12

US 9,183,406 B2

1

SAVING AND RETRIEVING DATA BASED ON
PUBLIC KEY ENCRYPTION

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 10/407,117, filed Apr. 4, 2003, entitled “Saving
and Retrieving Data Based on Public Key Encryption”, now
U.S. Pat. No. 7,890,771, which is hereby incorporated by
reference herein. U.S. Pat. No. 7,890,771 claims priority to
U.S. Provisional Application No. 60/373,505, filed Apr. 17,
2002, entitled “Secure Store Processor”, which is hereby
incorporated by reference.

A portion of the disclosure of this patent document con-
tains material which is subject to copyright protection. The
copyright owner has no objection to the facsimile reproduc-
tion by anyone of the patent document or the patent disclo-
sure, as it appears in the Patent and Trademark Office patent
file or records, but otherwise reserves all copyright rights
whatsoever.

TECHNICAL FIELD

This invention relates to saving and retrieving data, and
particularly to saving and retrieving data based on public key
encryption.

BACKGROUND

Protecting data on computers so that the data is only dis-
closed to appropriate parties has become an important con-
cern for users. The types of data that users want to protect
varies greatly, such as work-related or personal confidential
documents, bank account numbers, credit card numbers,
social security numbers, and so forth. Additionally, it is also
important to some third parties to protect the data on the
users’ computers from improper use or access. For example,
credit card issuers want credit card numbers to be protected so
that they are not disclosed to malicious programs or parties
hacking into the computer, music companies want songs to be
protected so they cannot be copied, movie studios want mov-
ies to be protected so they cannot be copies, and so forth.

One solution to protect data on computers is to do away
with general-purpose computing devices and use special-
purpose tamper-resistant boxes for delivery, storage, and dis-
play of secure content. This solution, however, can be unde-
sirable as it prevents users from expanding their computers
(e.g., users cannot install additional software components
and/or hardware components on such tamper-resistant
boxes). Thus, it would be beneficial to provide a way to allow
data to be protected on general-purpose computing devices.

SUMMARY

Saving and retrieving data based on public key encryption
is described herein.

In accordance with one or more aspects, data to be sealed
and one or more conditions that are to be satisfied in order for
the data to be unsealed are obtained. Both the data and the one
or more conditions are encrypted, using public key encryp-
tion, to generate a ciphertext that includes both the encrypted
data and the encrypted one or more conditions. One ofthe one
or more conditions comprises a time constraint for when the
data can be unsealed, and the data is not unsealed if the one or
more conditions are not satisfied.

BRIEF DESCRIPTION OF THE DRAWINGS

The same numbers are used throughout the document to
reference like components and/or features.

10

15

20

25

30

35

40

45

50

55

60

65

2

FIG. 1 illustrates an exemplary access control model.

FIG. 2 shows an example access control environment
employing four different hierarchical layers.

FIG. 3 is a flowchart illustrating an exemplary process for
implementing the Seal operation.

FIG. 4 is a flowchart illustrating an exemplary process for
implementing the UnSeal operation.

FIG. 5 is a flowchart illustrating an exemplary process for
implementing the Store operation.

FIG. 6 is a flowchart illustrating an exemplary process for
implementing the Seal operation.

FIG. 7 is a flowchart illustrating an exemplary process for
implementing the Quote operation.

FIG. 8 is a flowchart illustrating an exemplary process for
implementing the Verify operation.

FIG. 9 is a flowchart illustrating an exemplary process for
implementing the Seal operation

FIG. 10 is a flowchart illustrating an exemplary process for
implementing the PKSeal operation.

FIG. 11 is a flowchart illustrating an exemplary process for
implementing the GenSeal operation.

FIG. 12 illustrates a general computer environment, which
can be used to implement the techniques described herein.

DETAILED DESCRIPTION

FIG. 1 illustrates an exemplary access control model 100.
A principal 102 can make a request to access a protected
resource. The request is received by a guard 104, which is a
component that controls access to a resource 106. Guard 104
examines the request and decides whether to grant the request
based on an access policy for the resource as well as other
information, such as the identity of the principal 102 that
issued the request. For ease of explanation, a single principal
102, guard 104, and resource 106 are illustrated in FIG. 1.
However, it should be noted that access control model 100 can
include multiple principals 102, multiple guards 104, and/or
multiple resources 106.

A principal 102 refers to a component or module that
requests access to protected data. This request may be a
request to retrieve the protected data (e.g., a request for
retrieval of a cryptographic key), or a request to perform an
operation(s) using the protected data (e.g., the protected data
could be a cryptographic key and the request could be a
request to encrypt or decrypt particular data using the cryp-
tographic key). The principal 102 can be implemented as a
component or module in hardware, software, firmware, or a
combination of hardware, software, and/or firmware.

A guard 104 refers to a component or module that controls
access to the protected data. Guard 104 uses an access policy
associated with the protected data, as well as other informa-
tion (such as the identity of the principal requesting access to
the protected content), to determine whether to allow the
principal to access the protected data. If guard 104 determines
that the requesting principal is permitted to access the pro-
tected data, then guard 104 responds to the request in an
appropriate manner (e.g., if the request is a request for the
protected data, then the protected data is returned to the
principal; or, if the request is a request for particular data to be
encrypted using the protected data, then guard 104 encrypts
the particular data using the protected data and returns the
ciphertext (the encrypted data) to the principal). It should be
noted that guard 104 may restrict principals based on the
nature of the request. For example, guard 104 may allow a
particular principal to have particular data signed using the
protected data but may not allow the protected data to be
returned to the particular principal.

US 9,183,406 B2

3

A guard 104 can also be characterized as a disclosure guard
and/or a service guard. A service guard performs certain
operations (e.g., encryption, decryption, digital signing, etc.)
with the protected data (e.g., a cryptographic key) at the
request of principals without disclosing the protected data. A
disclosure guard, on the other hand, reveals the protected data
to authorized requestors. It should be noted that a particular
guard 104 can be both a disclosure guard and a service guard.

Resource 106 can be any type of data to which access is to
be restricted. Examples of resources 106 include crypto-
graphic keys, bank account numbers, credit card numbers,
personal information such as social security numbers, pass-
words, and so forth. Resource 106 can also be virtually any-
thing else in a computing device. For example, a resource 106
may also be physical memory (e.g., RAM or ROM), optical or
magnetic disks or disk drives, video cards, sound cards, smart
cards, and so forth. By way of another example, a resource
106 may also be operating system abstractions, such as pro-
cesses, files, threads, semaphores, and so forth.

In the discussion herein, access control model 100 is
described predominately with reference to being imple-
mented on a single computing device. However, it is to be
appreciated that different portions of the model can be imple-
mented on different computing devices. For example, a prin-
cipal 102 may be on one computing device while a guard 104
and resource 106 may be on another computing device.

The principals and guards on a computing device can be
categorized into any number n of hierarchical layers 1,,. FIG.
2 shows an example access control environment employing
four different hierarchical layers. In one implementation,
layer 1, refers to a hardware or security kernel layer, layer 1,
refers to a basic input/output system (BIOS) layer, layer 1,
refers to an operating system (OS) layer, and layer 1, refers to
an application layer.

In the example environment of FIG. 2, the lowest layer
(layer1,) guards a rootresource. Programs in the intermediate
layers (layers 1, and 1;) act as principals that request access
from the next lower layer, while at the same time act as guards
towards principals in the next higher layer. The intermediate
layers can thus add functionality for principals in higher
layers.

By way of example, assume that a program 120 desires to
retrieve a root resource 128 that is guarded by guard 126.
Program 120 acts as a principal requesting access to the root
resource 128 from module 122, which acts as a guard of the
resource. If module 122 has a copy of the resource 128 (e.g.,
previously obtained from guard 126 in response to a previous
request for the resource by program 120 or some other pro-
gram in layer 1,, or when module 122 was initialized and
loaded in the computing device), then module 122 checks
whether program 120 is allowed to retrieve the resource.
Module 122 then returns the resource to program 120 if
program 120 is allowed to retrieve the resource.

However, if module 122 does not have a copy of the
resource 128, then module 122 acts as a principal requesting
access to the root resource from module 124, which acts as a
guard of the resource. If module 124 has a copy of the
resource 128 (e.g., previously obtained from guard 126 in
response to a previous request for the resource by module 122
or some other module in layer 1;, or when module 124 was
initialized and loaded in the computing device), then module
124 checks whether module 122 is allowed to retrieve the
resource. Module 124 then returns the resource to module 122
if module 122 is allowed to retrieve the resource. Module 122
then returns the resource to program 120 if program 120 is
allowed to retrieve the resource.

10

15

20

25

30

35

40

45

50

55

60

65

4

However, if module 124 does not have a copy of the
resource 128, then module 124 acts as a principal requesting
access to the root resource from guard 126. Guard 126 checks
whether module 124 is allowed to retrieve the resource, and
returns the resource to module 124 if module 124 is allowed
to retrieve the resource. Module 124 then returns the resource
to module 122 if module 122 is allowed to retrieve the
resource, and module 122 returns the resource to program 120
if program 120 is allowed to retrieve the resource.

In the discussion herein, multiple references are made to
employing access control model 100 of FIG. 1 to allow
authenticated operation of software. Typically, the resources
being protected in authenticated operation of software are
cryptographic keys. However, it is to be appreciated that
authenticated operation of software is only one example of
the use of access control model 100.

Another example of the use of access control model 100 is
the authentication of a user(s) to a computer. Most modern
computers have an access control system. A user logs on to
the computer so that the computer knows who the user is.
After logging on, the user runs programs that typically need to
access system resources (e.g. read files, write to windows on
the screen, etc.). Typically, the access control system of the
computer is consulted (e.g., “can user x perform operation y
on resource z?”). If the answer is “no” the program cannot
access the resource.

Another example of the use of access control model 100 is
the authentication of a user(s) to a remote service. Remote
services such as web sites (e.g., on-line brokers or banks) can
be thought of as having access control systems. The resources
are people’s bank accounts, their money and their stocks.
After a user logs on to the web site, the access control system
will determine if the user is authorized to perform the
accesses requested by the user, such as a “read” access on the
resource “bank account data” (to retrieve the latest bank state-
ment), or a “transfer” access on the resource “$1000 in bank
account 12345”.

Yet another example of the use of access control model 100
is restricting physical access to particular buildings or areas.
For example, when a user arrives at work in the morning, the
user shows his or her badge and requests the “open” operation
on the resource “front door”. Some electronic system (a
guard) determines, based on information stored on the badge,
if the user is allowed to enter the building and unlocks the
door accordingly.

A computing device enables authenticated operation of a
program (software) if it is possible to let the program obtain
protected access (from a disclosure guard or from a service
guard) to at least one cryptographic resource. In certain
embodiments, a computing device that enables authentica-
tion and isolation, as described below, enables authenticated
operation.

A program C can be referred to as being isolated from
another program D if two points are satisfied: (1) there is
memory that can be accessed by program C but not by pro-
gram D, and (2) program D cannot initiate execution of pro-
gram C (except, possibly, at an entry point(s) determined by
program C). A program is given by its transition rules (execut-
able code) and by its initial state (entry point(s) or initial value
of'the instruction pointer IP). The first point guarantees integ-
rity of the program code and the state information of program
C, even in the presence of adversarial behavior by program D,
since data can be stored in the memory that cannot be
accessed by program D. This point also allows program C to
protect confidential data (e.g., cryptographic keys) from

US 9,183,406 B2

5

observation by program D. The second point guarantees that
D cannot subvert the behavior of C by choosing the entry
point adversarially.

Additionally, it can be said that a program C can authenti-
cate a program D if program C is able to identify both the
transition rules (program code) and the initial state of pro-
gram D. The computing device enables isolation for any
program C from any other program D, with the exception of
a single program E, for each layer j<i, where 1 is the layer of
program C. This protects programs from observation and
interference by any program, except for the sequence E,,
E,, ..., E,_; of guards through which program C requests
access to its resources. Furthermore, for any layer i, the com-
puting device enables a program executing in layer i to
authenticate at least some programs in layer i+1. This require-
ment allows a program to act as a guard for requests from
principals in the next layer. These two observations give rise
to an inductive argument that programs in any layer can act as
guards for resources by requesting access to a resource from
their predecessor, protecting their integrity and the resource
through isolation and authenticating requests from principals
in the next layer.

Isolation can be implemented by using physical memory
protections. This approach is referred to as “isolation in
space” or “space isolation”. For example, the ring and virtual
memory protections found in many modern microprocessors
are sufficient to implement isolation in space. An operating
system kernel (layer 1) running in privileged mode can set up
page tables for applications (layer i+1), such that any appli-
cation can only access those parts of physical memory that the
operating system kernel chooses to map into the application’s
virtual address space. Furthermore, the kernel restricts appli-
cations’ privileges so that they cannot change the memory
mapping, and ensures that applications can initiate execution
of kernel code only at a well defined entry point(s) (system
calls).

Another approach to implementing isolation between two
layers is to separate their execution in time. This approach is
referred to as “isolation in time” or “time isolation”. A pro-
gram in a first layer i executes to completion, makes certain
resources unavailable, and then terminates. Subsequently,
control is transferred to the next layer i+1.

Authentication occurs between subsequent layers (j=i+1).
Program C authenticates the program (transition rules) and
the initial state of the configuration of j. The program can be
authenticated by letting program C inspect the program in
layer j. That is, typically program C reads the memory, which
contains the program for layer j, and computes a crypto-
graphic digest over this memory range. It should be noted that
the goal at this point is only to ascertain the identity of the
code, not to evaluate statements made by other principals
about the code. Thus, certificates are not necessary at this
point.

The second task for program C is to identify the initial state
of program D. In general, the problem of determining the
initial state of a program at an arbitrary execution stage is very
difficult. Thus, program C controls the initial state of program
D. In practical terms, this means that program C can only
ascertain the initial state o of program D if program C initiates
the execution of program D at o.

Insummary, in order to authenticate program D, program C
inspects the memory contents it deems relevant (program and,
possibly, data) and computes a cryptographic digest. After
that, program C transfers execution to a well-defined entry
point of program D.

In situations where the resources are cryptographic keys,
authenticated operation allows each operating system and

10

15

20

25

30

35

40

45

50

55

60

65

6

application program to have exclusive access to one or more
secrets. The isolation discussed above protects each secret
from attacks by adversarial code. The authentication of pro-
grams discussed above allows programs to be identified, such
that each secret is disclosed only to the program that owns it.

Generally, given a request from a program (a principal 102
of FIG. 1), a guard 104 establishes the identity of the program
(that is, guard 104 authenticates the program). If the program
is not the owner of the requested secret (a resource 106), then
guard 104 rejects the request. Otherwise, guard 104 computes
some function of the secret (which may be the secret itself)
and, possibly, further information provided by the program
and returns the result. Alternatively, rather than explicitly
accepting or rejecting requests, guard 104 may service the
request but bind the identity of the caller into the result. This
alternate approach is appropriate, for example, if the result
returned by the guard does not contain confidential informa-
tion (e.g., requests to use a secret to produce a digital signa-
ture). The term gating functions is used herein to refer to both
of these cases.

Additionally, in either case, guard 104 authenticates the
caller (principal 102). Authenticating a principal 102 is also
referred to herein by a function ID() which returns a digest of
the calling program (the program calling a gating function of
guard 104). The digest can be generated in any of a wide
variety of conventional manners, such as using any one or
more of a variety of cryptographic hash functions (also
referred to as one-way hash functions), such as SHA1 (Secure
Hash Algorithm 1), MDS5 (Message Digest 5), MD2 (Mes-
sage Digest 2), etc.; using a keyed MAC (Message Authenti-
cation Code); and so forth.

One class of gating functions described herein implement
sealed storage. The purpose of sealed storage is to allow
programs to store secrets, such that only a particular set of one
or more programs (defined by the program that stores the
secret) can retrieve the secrets. In one implementation, only
the program that originally saves (seals) the secret can recover
(unseal) the secret. Typically, the life time of these secrets will
exceed the time of individual executions of the program.
Secrets used during a single execution of a program can be
saved (sealed), or alternatively isolation and a random num-
ber generator also allow a program to maintain secrets during
a single execution. Sealed storage also allows a program to
maintain secrets across different executions, which may not
overlap in time. A layer], exposes sealed storage to the next
layer 1,,, by means of the following interface (e.g., using the
“Seal” and “UnSeal” operations and/or PKSeal and PKUn-
seal operations).

The discussions herein regarding sealed storage refer to
cryptographic keys being used to encrypt and decrypt data.
These cryptographic keys are the keys associated with the
guard that is guarding access to the resource (e.g., guard 104
of FIG. 1).

The discussions herein also refer to identifiers of programs
(e.g., an identifier of the program calling or invoking an
operation, or an identifier of a target program that is allowed
to access a resource). These identifiers are often referred to
herein as digests. However, it is to be appreciated that digests
are only one example of identifiers of programs. Other types
of'identifiers that are a measure or other representation of the
program and that allow any changes to the program to be
detected can be used. If any changes are made to the program
(e.g., one or more instructions being changed by an adversary
in an attempt to maliciously gain access to and make use of the
protected data) then the identifier of the program should

US 9,183,406 B2

7

reflect that change (e.g., the identifier for the unchanged
program will be different than the identifier for the changed
program).

The Seal operation receives, as an input, data (e.g., a secret)
to be sealed. The Seal operation also optionally receives, as an
input, a condition that identifies when and/or to whom the
secret may be revealed (unsealed). In one implementation,
this condition is a digest of a target program that is allowed to
retrieve (unseal) the data. Alternatively, programs that are to
be allowed to retrieve (unseal) the data can be identified in
other manners. For example, the programs may be identified
by a public key that verifies one or more certificates, with each
certificate being associated with one or more of the programs.

Alternatively, other conditions may be used in addition to,
or in place of, an identifier of a target program. For example,
the condition may include particular time constraints for
when the data can be revealed (unsealed), such as particular
times of the day or days of the week during which the secret
can be revealed (unsealed). By way of another example, the
condition may include an identifier of a password or other
data that must be provided in order for the secret to be
revealed (unsealed)—e.g., the secret can only be unsealed by
programs having knowledge of the password.

By way of yet another example, the condition can be a
logical formula (e.g., any statement written in first order
logic, any statement written in predicate logic, etc.). The
logical formula is evaluated (e.g., by the guard) and the secret
is revealed (unsealed) only if the evaluation returns an indi-
cation of true.

In still another example, the condition can be an executable
program in some language (e.g., java, C¥*, Javascript,
VBSecript, etc.). The program is executed (e.g., by the guard)
and the secret is revealed (unsealed) only if the program
returns some indication of “true” or “satisfied”.

In situations where the condition is the digest of the target
program, rather than being supplied with the digest of the
target program, the Seal operation may use the digest of the
program that invokes the Seal operation (thereby implicitly
inputting the digest of the target program). Additionally,
digests of multiple target programs can be input to the Seal
operation, thereby allowing multiple target programs to
retrieve (unseal) the data.

The Seal operation encrypts its inputs (the data and the
condition(s) allowing retrieval (unsealing) of the data)
together with an identifier of the caller. The Seal operation
returns the input data in an encrypted form (as ciphertext).
The Seal operation also returns a value (e.g., a message
authentication code (MAC) value) that can be used to verify
the integrity of the sealed data. This returned data allows the
stored data to be referenced in subsequent UnSeal operations,
as discussed in more detail below.

Pseudo code for the Seal operation is illustrated in Table I.
Inthe pseudo code of Table I, ID() refers to the ID() function
discussed above, e refers to the value (e.g., a string or
sequence of bits) that is returned to the caller, data refers to the
data to be sealed, and [t,, . . ., t,,] refers to the digests of one
or more (m) target program(s) that are allowed to retrieve
(unseal) the data (or alternatively one or more other condi-
tions).

TABLE I

d =ID()
e = store (data, [ty ...
return e

> tul, d)

10

15

20

25

30

35

40

45

50

55

60

65

8

FIG. 3 is a flowchart illustrating an exemplary process 200
for implementing the Seal operation. Process 200 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, a secret to be sealed is received from the caller (act
202). The secret is encrypted so that the secret can only be
retrieved by a particular target program(s) (act 204), or alter-
natively so that the secret can only be retrieved if one or more
particular conditions are satisfied. Ciphertext including the
encrypted secret is then returned to the caller (act 206). Addi-
tional information may also be returned to the caller (as part
of the ciphertext or separate from the ciphertext), such as a
digest of the caller and/or digest(s) of the target program(s).

The UnSeal operation receives, as an input, a bit string that
was returned by the Seal operation when sealing data (e.g., a
cryptographic key) that the calling program now desires to
retrieve. The UnSeal operation obtains the condition(s) for
revealing the data and checks whether those conditions are
satisfied. For example, if the condition(s) included digest(s)
of the one or more target program(s) that are allowed to
retrieve (unseal) the data, then the UnSeal operation obtains
those digest(s) and checks whether the calling program is one
of'the one or more target program(s). If the calling program is
not one of the one or more target program(s) then the UnSeal
operation fails and the requested data is not returned to the
caller. However, if the calling program is one of the one or
more target program(s), then the UnSeal operation succeeds
and the requested data is returned to the calling program. The
digest of the program that sealed the data is also optionally
returned by the UnSeal operation.

Pseudo code for the UnSeal operation is illustrated in Table
1. In the pseudo code of Table I1, data refers to the data that is
being requested (and that has been previously sealed),
[t;, . .., t,] refers to the digests of one or more (m) target
program(s) that are allowed to retrieve (unseal) the data (or
alternatively one or more other conditions), e refers to the
input to the UnSeal operation (typically previously output by
a Seal operation), and d refers to the digest of the program that
sealed the data.

TABLE II
(data, [t;, ..., t,,], d) = retrieve(e)
if ID() is in [ty, ..., t,,] then return (data, d)

else fail

FIG. 4 is a flowchart illustrating an exemplary process 220
for implementing the UnSeal operation. Process 220 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, ciphertext with encrypted data that the caller
desires to retrieve is received (act 222). A check is made as to
whether the caller is allowed to retrieve the data (act 224), and
processing proceeds based on whether the caller is allowed to
retrieve the data (act 226). If the caller is allowed to retrieve
the data, then the data (decrypted) is returned to the caller (act
228). If the caller is not allowed to retrieve the data, then the
process fails (act 230) and the data is not returned to the caller.

Sealed storage can be implemented in different manners. In
one implementation, sealed storage is implemented using
physically protected non-volatile memory. In this implemen-
tation, the computing device associates different guards with
different portions of the protected non-volatile memory and
allows each guard to access only those portions which are
associated with that guard. In this implementation, the Store
and Retrieve operations referenced in the Seal and UnSeal
operations are invoked to have the computing device store and

US 9,183,406 B2

9

retrieve, respectively, the data in the protected non-volatile
memory associated with the guard.

By way of example, a storage device (such as a hard disk
drive) can implement a guard. Rather than simply executing
read and write commands to the storage device uncondition-
ally, the storage device identifies the principal attempting to
access the storage device (e.g., based on a digest of the prin-
cipal) and allows only a particular principal(s) to access the
storage device. Alternatively, different principals may be
restricted to accessing only particular portions of the storage
device (e.g., particular sectors or address ranges).

In another implementation, sealed storage is implemented
using cryptography. A description of one exemplary imple-
mentation of sealed storage using cryptography follows.

When using cryptography to implement sealed storage, the
resource is a key K rather than physically protected memory.
The Store operation does not physically store its inputs.
Rather, the Store operation produces a cryptographically pro-
tected output ¢, which is the inputs of the Store operation in an
encrypted and integrity protected form. The encryption is a
result of applying a symmetric cipher to the input(s). The
latter property results from applying a message authentica-
tion code (MAC) to the input(s) (either before or after the
input(s) is encrypted).

Pseudo code for the Store operation is illustrated in Table
II1. In the pseudo code of Table 111, b refers to the bit string
input to the Store operation, ¢ refers to the bit string output by
the Store operation, K1 refers to a first part of the key K, and
K2 refers to a second part of the key K. The key K is a
symmetric key of the guard implementing the Seal and Store
operations.

TABLE III
m = MAC,(b)

¢ = (m, Encryptg,(b))
return ¢

Thus, as can be seen in Table I11, a value (m) is generated by
applying a MAC to the bit string input to the Store operation.
The MAC is keyed to a portion (K1) of the key K. The bit
string input to the store operation is also encrypted using a
second portion (K2) of the key K. The values generated by
applying the MAC to the input bit string and by encrypting the
input bit string are then returned to the caller of the Store
operation.

The key K is partitioned into two independent keys K1 and
K2 in order to avoid using the same key for the MAC and the
cipher. This partitioning can be performed in any of a variety
of manners. The partitions may use different bits of the key K
or alternatively may use one or more of the same bits. For
example, assuming that the key K is 1024 bits, then the low
512 bits may be used as key K1 and the high 512 bits may be
used as key K2, the even numbered bits (bits 0, 2, 4, 6, 8,
10, . ..,1022) may be used as key K1 and the odd numbered
bits (bits 1, 3,5,7,9,11, . . ., 1023) may be used as key K2,
the low 650 bits may be used as key K1 and the high 650 bits
may be used as key K2 (resulting in some bits being used for
both K1 and K2), and so forth. Alternatively, the same key K
may be used for both the MAC and the cipher.

The pseudo code illustrated in Table III implements the
Store operation by computing a MAC over the data, encrypt-
ing the data, and outputting both the MAC and the ciphertext.
Alternatively, the Store operation may be implemented in
different manners. For example, the Store operation may
encrypt the data first, then compute a MAC over the ciphertext
and output both the ciphertext and the MAC. By way of

35

40

45

60

10

another example, the Store operation may compute a MAC
over the data, then encrypt both the data and the MAC, and
output the ciphertext.

The encryption performed by the cipher of the Store opera-
tion can be performed using any of a variety of symmetric
encryption algorithms. Generally, symmetric encryption
algorithms use the same key for both encryption and decryp-
tion. Examples of such algorithms include triple-DES (Data
Encryption Standard), AES (Advanced Encryption Stan-
dard), and so forth.

Similarly, the MAC can be any of a variety of message
authentication codes, such as the MAC described in M. Bel-
lare, R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication,” in Advances in Cryptology—
Crypto’96, number 1109 in Lecture Notes in CS, 1996. Alter-
natively, integrity can be protected by means of a public key
digital signature in place of a MAC.

FIG. 5 is a flowchart illustrating an exemplary process 250
for implementing the Store operation. Process 250 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, data to be stored is received (act 252). A symmet-
ric cipher is applied to the data (act 254) and a message
authentication code (MAC) is applied to the data (act 256).
The encrypted data generated in act 254 and the MAC value
generated in act 256 are then returned to the caller (act 258).

The Retrieve operation receives an input bit string that
includes a MAC value and ciphertext. The ciphertext is
decrypted to generate plaintext and a MAC value is generated
for the plaintext. If the MAC value generated for the plaintext
is the same as the MAC value received as part of the input bit
string, then the plaintext is returned to the caller. However, if
the MAC value generated for the plaintext is not the same as
the MAC value received as part of the input bit string, then the
Retrieve operation fails and the plaintext is not returned to the
caller. It is to be appreciated that the specific manner in which
the Retrieve operation is implemented to obtain the MAC and
the ciphertext from the input bit string is dependent on the
manner in which the Store operation is implemented

Pseudo code for the Retrieve operation is illustrated in
Table IV. In the pseudo code of Table IV, ¢ refers to the bit
string input to the Retrieve operation, b refers to the bit string
output by the Retrieve operation, m refers to the MAC value
portion of the bit string input to the Retrieve operation, d
refers to the ciphertext portion of the bit string input to the
Retrieve operation, K1 refers to a first part of the key K, and
K2 refers to a second part of the key K. The K1 and K2 keys
are the same portions of the key K as discussed above with
respect to the Store operation.

TABLE IV

Let (m,d)=c¢

b =Decryptg,(d))

if m = MACg, (b) then return b
else fail

Thus, as can be seen in Table [V, a value (b) is generated by
decrypting the bit string input to the Retrieve operation. A
MAC value is then generated for the value (b). If the MAC
value generated by the Retrieve operation is the same as the
MAC value that is received as part of the bit string input to the
Retrieve operation then the value (b) is returned to the caller
of the Retrieve operation, otherwise the Retrieve operation
fails.

The pseudo code of Table IV is based on the implementa-
tion of the Store operation where the MAC is computed over

US 9,183,406 B2

11

the data, the data is encrypted, and the MAC and ciphertext
together are output (and serve as the input bit string to the
Retrieve operation). If the Store operation were implemented
to encrypt the data first, then compute a MAC over the cipher-
text and output both the ciphertext and the MAC, then the
Retrieve operation would be implemented to compute the
MAC of the ciphertext and compare it to the MAC value
received as part of the input bit string, then decrypt the cipher-
text and return the decrypted data if the MAC values match. If
the Store operation were implemented to compute a MAC
over the data then encrypt both the data and the MAC, then the
Retrieve operation would be implemented to decrypt the
input bit string, then compute a MAC over the data in the input
bit string and compare the computed MAC to a MAC value in
the decrypted string, and return the data if the MAC values
match.

Analogous to the discussion above regarding the Store
operation, any of a variety of decryption algorithms can be
used by the Retrieve operation. However, the decryption algo-
rithm should correspond to the encryption algorithm so that
the encrypted data can be decrypted. Similarly, any of a
variety of message authentication codes can be used as the
MAC, but he message authentication code used should be the
same as the message authentication code used by the Store
operation.

FIG. 6 is a flowchart illustrating an exemplary process 270
for implementing the Seal operation. Process 270 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, a ciphertext and MAC value are received (act
272). The ciphertext is decrypted to generate plaintext data
(act274). A message authentication code (MAC) is applied to
the plaintext data to generate a MAC value (act 276) and a
check is made as to whether the MAC value generated in act
276 is equal to the MAC value received in act 272 (act 278).
Processing then proceeds based on whether the generated
MAC value is equal to the received MAC value (act 280). If
the generated MAC value is equal to the received MAC value,
then the plaintext data is returned to the caller (act 282).
However, if the generated MAC value is not equal to the
received MAC value, then the process fails (act 284) and the
plaintext data is not returned to the caller.

Thus, the cryptography approach to sealed storage sub-
stantially guarantees that any corruption of the value c (the
output of the Store operation) can be detected, and that the
value b (the input to the Store operation) cannot be retrieved
without access to the key K2 (the key used by the cipher to
encrypt the value b).

Another class of gating functions implement remote
authentication. The purpose of remote authentication is to
allow programs to be authenticated even in the absence of a
strong physical coupling to the authenticator (e.g., using serv-
ers or smart cards). In this situation, authentication is based on
cryptography. That is, both entities go through a crypto-
graphic authentication protocol. This involves the authenti-
cated configuration having access to a secret, which, depend-
ing on the protocol, is typically a private key or a symmetric
key. Additionally, the computing device can tie the use of
these authentication secrets to the identity of the configura-
tion (e.g., the processor and/or software) that requests their
use. Thus, the authenticator can establish the identity of the
computing device, as well as the software executing on it.

Two operations, the Quote operation and the PKUnseal
operation, are the respective gating functions for public key
signing and public key decryption. The guard implementing
these gating functions has access to a signing key Ks and a
decryption key Kd. Both the signing key Ks and the decryp-

10

15

20

25

30

35

40

45

50

55

60

65

12

tion key Kd are also referred to as the private key of a public/
private key pair. This public/private key pair is a key pair of
the guard implementing the Quote and PKUnseal operations.

The Quote operation returns a public key signature over a
combination of (e.g., the concatenation of) the input to the
Quote operation and a condition that identifies when and/or to
whom the secret may be revealed. Analogous to the Seal and
UnSeal operations discussed above, revealing of the secret
can be tied to any of a variety of conditions. In one imple-
mentation, the condition is an identifier of (e.g., digest of) the
calling program.

Inherent in the signature is the assertion that the operation
was performed at the request of the identified calling pro-
gram. The Quote operation works in conjunction with a
Verify operation, which typically executes on a device other
than the device on which the Quote operation executes (e.g.,
on a remote server device, on a smart card, etc.). The Verify
operation performs a public key signature verification and
retrieves and evaluates the identifier of the calling program
(and/or other conditions for revealing the secret).

Pseudo code for the Quote operation is illustrated in Table
V. In the pseudo code of Table V, ID() refers to the ID()
function discussed above, a refers to the data input to the
Quote operation, and Ks refers to a signing key.

TABLE V

d=ID()
return sn=Signatureg.(d, a)

Thus, as can be seen in Table V, the Quote operation obtains
a digest of the calling program and receives an input value a.
The Quote operation generates a digital signature (sn) of the
input value a and the digest of the calling program using the
signing key Ks. The input value a can be generated by the
calling program, or alternatively may be a value that is
received from another component or device (e.g., from the
device that will be performing the Verify operation). The
digital signature is generated using public key cryptography.

FIG. 7 is a flowchart illustrating an exemplary process 300
for implementing the Quote operation. Process 300 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, input data is received from a caller (act 302). An
identifier of the caller (an/or one or more other conditions for
retrieving the input data) is obtained (act 304) and a digital
signature over the combination of the input data and the
identifier (and/or one or more other conditions) of the caller is
generated (act 306). The generated digital signature is then
returned to the caller (act 308).

The Verify operation performs a public key signature veri-
fication and retrieves and evaluates the identifier of the calling
program. The Verify operation receives a digital signature that
was generated by a Quote operation, typically from a device
other than the device on which the Verify operation executes
(e.g., on a remote server device, on a smart card, etc.). The
Verify operation extracts the digest of the program (e.g., an
application program, operating system, firmware program,
etc.) that called the Quote operation from the received digital
signature, and evaluates that digest to determine how to pro-
ceed.

Pseudo code for the Verity operation is illustrated in Table
V1. Inthe pseudo code of Table VI, d refers to the digest of the
program that called the Quote operation, a refers to the value
that was input to the Quote operation, and Sn refers to the
digital signature received by the Verify operation as an input.

US 9,183,406 B2

13
TABLE VI

(d,a)=Extractg. (Sn)
Evaluate(d)

Thus, as can be seen in Table VI, the Verify operation
receives a digital signature and, using verification key Kv
(which is the public key of the public/private key pair that
includes the signing key Ks) extracts the digest d and the
value a from the signature. The Verify program can then
evaluate the digest d of the program that called the Quote
operation. The manner in which the digest d is evaluated can
vary. For example, the evaluation may involve comparing the
digest d to a list of “approved” or “trusted” application pro-
grams.

FIG. 8 is a flowchart illustrating an exemplary process 320
for implementing the Verify operation. Process 320 is per-
formed by a guard 104 of FIG. 1, and may be implemented in
hardware, software, firmware, or a combination thereof.

Initially, a digital signature is received (act 322). Both the
identifier of the caller (and/or one or more other conditions for
retrieving the input value) that quoted an input value (using
the Quote operation) and the input value itself are extracted
from the digital signature (act 324). The identifier of the caller
(and/or the one or more other extracted conditions) is then
evaluated to determine how to proceed with the input value
(act 326).

The PKUnseal operation is a version of public key decryp-
tion, which is gated on the identity of the caller (e.g., the
digest of the calling program), or alternatively one or more
other conditions. The result of the public key decryption of
the input ¢ to the PKUnseal operation is interpreted as a pair
(d, s), where s is a secret and d identifies a configuration (e.g.,
digest of a calling program) to which s may be revealed. If the
caller of PKUnseal is not d then the PKUnseal operation fails.
The input ¢ to the PKUnseal operation is generated by a
second operation PKSeal, which can be executed on a device
other than the device on which the PKUnseal operation
executes (e.g., on a remote server device, on a smart card,
etc.). The PKSeal operation performs a public key encryption
of'apair(d, s). The PKUnseal and PKSeal operations can also
be used to implement sealed storage.

Pseudo code for the PKUnseal operation is illustrated in
Table VII. In the pseudo code of Table VII, ID() refers to the
ID() function discussed above, ¢ refers to the input to the
PKUnseal operation, [d1, . . ., d,,] refers to the digest(s) of the
one or more calling programs to which s can be revealed (or
alternatively one or more other conditions), s refers to the
protected data, and Kd refers to a decryption key (a private
key of a public/private key pair associated with the guard that
is implementing the PKUnseal operation).

TABLE VII

([d1, ..., d,,], s) = Decrypt,(c)
if ID() is in [d1, ..., d,,,] then return s
else fail

Thus, as can be seen in Table VII, the PKUnseal operation
decrypts the input value a using public key decryption and the
decryption key Kd. The decrypted input value includes the
digest(s) [d1, . . ., d,,] of one or more calling programs to
which the protected data s is allowed to be revealed (or alter-
natively one or more other conditions identifying when and/
orto whom the protected data s is allowed to be revealed). The
PKUnseal operation also generates a digest of the calling
program. If the digest of the calling program is equal to one of

15

40

45

55

14

the digests [d1, . . ., d,,], then the protected data s is returned
to the calling program. However, if the digest of the calling
program is not equal to one of the digests [d1, . .., d,], then
the protected data s is not returned to the calling program.

FIG. 9 is a flowchart illustrating an exemplary process 340
for implementing the PKUnseal operation. Process 340 is
performed by a guard 104 of FIG. 1, and may be implemented
in hardware, software, firmware, or a combination thereof.

Initially, ciphertext with encrypted data that the caller
desires to retrieve is received (act 342). A check is made as to
whether the caller is allowed to retrieve the data (act 344), and
processing proceeds based on whether the caller is allowed to
retrieve the data (act 346). If the caller is allowed to retrieve
the data, then the data (decrypted using public key decryp-
tion) is returned to the caller (act 348). If the caller is not
allowed to retrieve the data, then the process fails (act 350)
and the data is not returned to the caller.

The PKSeal operation is a version of public key encryption,
which is gated on the identity of the caller (e.g., the digest of
the calling program or one or more other programs). The
PKSeal operation performs a public key encryption of a pair
(d, s), where s is a secret and d identifies one or more con-
figurations (e.g., digests of a calling program) to which s may
be revealed.

Pseudo code for the PKSeal operation is illustrated in Table
VIII. In the pseudo code of Table VIII, ¢ refers to the output of
the PKSeal operation, [d1, . . ., d,,] refers to the digest(s) of
the one or more calling programs to which s can be revealed,
s refers to the protected data, and Ke refers to an encryption
key.

TABLE VIII

c=Encryptg.([dl, ..., d,,],s)
return ¢

Thus, as can be seen in Table VIII, the PKSeal operation
receives as an input the protected data s and digests [d1, . . .,
d,,] of one or more programs to which the protected data s can
be revealed. The pair [d1, . . ., d,], s is then encrypted using
public key cryptography based on the encryption key Ke. The
encryption key Ke is the public key of the guard that is
intended to be able to decrypt the ciphertext. The ciphertext
resulting from the public key encryption is then returned to
the calling program.

FIG. 10 is a flowchart illustrating an exemplary process
360 for implementing the PKSeal operation. Process 360 is
performed by a guard 104 of FIG. 1, and may be implemented
in hardware, software, firmware, or a combination thereof.

Initially, a secret to be sealed is received from the caller (act
362). The secret is encrypted using public key encryption so
that the secret can only be retrieved by a particular target
program(s) (act 364), or alternatively only if one or more
other conditions are satisfied. Ciphertext including the
encrypted secret is then returned to the caller (act 366). Addi-
tional information may also be returned to the caller (as part
of the ciphertext or separate from the ciphertext), such as a
digest of the caller and/or digest(s) of the target program(s).

The Quote and PKUnseal operations are intended to be
used in connection with public key authentication protocols.
Most public key authentication protocols can be straightfor-
wardly adapted by replacing any call to public key decryp-
tion, public key encryption, signing, and signature verifica-
tion by a call to PKUnseal, PKSeal, Quote, Verify,
respectively.

In some situations, it is important to be able to obtain a
random number (e.g., as a basis for generating cryptographic

US 9,183,406 B2

15

keys). Random numbers can be obtained in a variety of dif-
ferent manners. In one implementation, the source of random
numbers is a cryptographically strong random number gen-
erator implemented in the hardware of the computing device.

One alternative to the Seal operation discussed above is a
GenSeal operation that combines the Seal operation with a
generate random number operation. The GenSeal operation
receives as input the digests [t1, . . ., t,,] of target program(s)
that should be able to retrieve the secret (and/or other condi-
tions that must be satisfied in order for the secret to be
retrieved). The GenSeal operation generates a random num-
ber and seals the newly generated random number so that it
can be retrieved only by calling programs having one of the
target digest(s) [t1, . . ., t,] (and/or the other conditions
satisfied).

Pseudo code for the GenSeal operation is illustrated in
Table IX. In the pseudo code of Table IX, ID() refers to the
ID() function discussed above, ¢ refers to the output of the
GenSeal operation, s refers to the newly generated random
number, [t1, . . ., t,] refer to one or more target program(s)
that should be permitted to retrieve the value s (one of which
may optionally be the program calling the GenSeal operation)
or alternatively one or more other conditions, and GenRan-
dom() refers to a function that generates a random number.

TABLE IX

d =ID()

s =GenRandom()

¢ =store (s, [tl, ..., t,,], d)
return ¢

FIG. 11 is a flowchart illustrating an exemplary process
380 for implementing the GenSeal operation. Process 380 is
performed by a guard 104 of FIG. 1, and may be implemented
in hardware, software, firmware, or a combination thereof.

Initially, an input is received from a caller that identifies a
target program(s) that should be able to retrieve a secret (act
382), or alternatively one or more other conditions that are to
be satisfied in order for the secret to be retrieved. A secret is
then generated (act 384), and the secret is encrypted so that
the secret can only be retrieved by the identified target pro-
gram(s) (act 386), or alternatively so that the secret can be
retrieved only if the one or more other conditions are satisfied.
Ciphertext including the encrypted secret is then returned to
the caller (act 388). Additional information may also be
returned to the caller (as part of the ciphertext or separate
from the ciphertext), such as a digest of the caller and/or
digest(s) of the target program(s).

The services provided by a disclosure guard can be used for
general-purpose sealing services. For example, referring
back to FIGS. 1 and 2, layer n-1 reveals a single key to layer
n based on the identity of layer n on initialization (e.g., after
reset or booting of the computing device, or upon beginning
execution ofa program). Layer n caches this key and uses it to
encrypt additional secrets. The next time the platform is
booted into the same configuration, the disclosure guard pro-
vides the same root-key (e.g., through UnSeal or PKUnseal),
and all the secrets previously encrypted can be retrieved by
layer n.

In certain embodiments, a lower layer discloses one or
more secrets to the next layer when that next layer is initial-
ized (e.g., after reset or booting of the computing device, or
upon beginning execution of a program). Following this gated
disclosure, the lower layer is no longer used (until the next
boot or reset). This use-model is also referred to as the dis-

10

15

20

25

30

35

40

45

50

55

60

16

closure guard model. By employing the disclosure guard
model, accesses to the lower layer are reduced.

The gating functions discussed herein can be used with
service guards and disclosure guards implemented using time
isolation and space isolation. Four service model implemen-
tations for authenticated operation are discussed below: (1)
service guard—space isolation; (2) disclosure guard—space
isolation; (3) disclosure guard—time isolation; (4) service
guard—time isolation. In the discussion of these service mod-
els, assume that a lower-level guard has disclosed one or more
keys to the guard at the layer being considered. The manner in
which these keys are obtained depends on the guard and
isolation model of the layer beneath. Different layers on the
same computing device can use different ones of these service
models.

(1) Service guard—space isolation: The guard measures
and saves the identity of the requesting program when it is
initialized. The guard implements a protection system using
processor services (e.g., of a CPU or some other security
processor or co-processor), and a system-call interface expos-
ing the authenticated operation primitive operations.

(2) Disclosure guard—space isolation: The guard obtains
service requests on initialization in the form of cryptographic
blobs. The blobs could be stored in memory, or alternatively
obtained from external storage devices. The guard measures
the identity of programs that it initializes, and discloses keys
to programs according to the gating functions described
above. Before relinquishing control to the next layer, the
guard establishes mode-protection for itself and its secret
resources.

(3) Disclosure guard—time isolation: The guard obtains
service requests on initialization in the form of cryptographic
blobs (groups of bits). The blobs could be stored in memory,
or alternatively obtained from external storage devices. The
guard measures the identity of programs that it initializes, and
discloses keys to programs according to the gating functions
described above. Before passing control to these programs,
the guard deletes (or otherwise makes inaccessible) the keys
used to implement the gating functions.

(4) Service guard—time isolation: In the service guard—
time isolation model, the computing device securely pre-
serves program state across the security reset. This model is
similar to model (1) (service guard—space isolation), how-
ever, before passing control to the next layer, the service
guard deletes its secret (rendering it non-functional until the
next reboot). The next layer will now execute normally, until
it needs to request a service from the guard. At that point, it
stores the parameters of the request somewhere in memory
where they will survive a reset and performs a reset. As the
device reboots, the service guard obtains its secret, sees the
request, executes it (using its key), destroys the key and any
related information, and passes the result of the computation
and control to the next layer (the layer that had originally
requested the service).

In certain embodiments, if a computing device supports
space isolation, then the security kernel should expose the
primitives (operations) Seal, Unseal, GetRandom (to obtain a
random number), and PKUnseal (or Quote). The security
kernel can implement a disclosure guard or a service guard.
On the other hand, if the platform supports time isolation,
then the security kernel should provide a disclosure guard,
and should implement the primitives (operations) Unseal,
GenSeal, and PKUnseal (or Quote).

It should also be noted that Quote and PKUnseal function-
ality can be built on the Seal and Unseal or Unseal and
GenSeal primitives. For example, manufacturers can build an
1, program(s) that implements Quote or PK Unseal and acts as

US 9,183,406 B2

17

ahost for higher-level software (e.g., operating systems) upon
GenSeal and Unseal implemented in1,. The manufacturer can
generate and Seal the keys needed by the service layer and
ship them with the device or CPU (or make them available
online).

An exemplary description of a family of hardware imple-
mentations that will enable platforms to support authenti-
cated operation follows. As with higher layers in the system,
the characteristics of the lowest layer (1, of FIG. 2) are: (a)
secret key resources, (b) privileged code that has access to
these keys, and (c) controlled initialization of the layer.

Authenticated operation provides a strong binding
between programs and secret keys. At higher layers, guards in
lower layers guarantee this binding. At the lowest layer, there
is no underlying software guard that can gate access to the
platform secrets. Thus, another mechanism is used to support
the association of the 1; keys to the 1, program. One way of
accomplishing this binding is having 1, software be platform
microcode or firmware that is not changeable following
manufacture, and give the 1, software unrestricted access to
the 1, keys. This platform microcode or firmware can then be
referred to as the security kernel, and the 1, keys referred to as
the platform keys. The platform is designed to only pass
control to a predetermined security kernel. The hardware
behavior can also be explained as a simple resource guard that
discloses the platform keys to the predefined security kernel.

The platform keys and the security kernel firmware can be
part of the processor or alternatively implemented in one or
more other components in the computing device (e.g., a secu-
rity processor or coprocessor, which may also perform cryp-
tographic operations). The platform keys and the security
kernel firmware can be implemented in a single component,
or alternatively implemented in multiple components of the
computing device.

With authenticated operation, programs are started in a
controlled initial state. At higher levels, the software running
atlower levels can be entrusted to start execution at the correct
entry point. At 1,, however, hardware performs this function.
Typically, on power-up or following reset, current processors
begin execution by following some deterministic sequence.
For example, in the simplest case the processor starts fetching
and executing code from an architecturally-defined memory
location. For 1, programs can be started in a controlled initial
state by the hardware ensuring that the security kernel is the
code that executes on startup (as part of the deterministic
sequence).

Additionally, no other platform state should be able to
subvert execution of the security kernel. Reset and power-up
provide a robust and a well-debugged state-clear for the pro-
cessor. As used in this example, the platform state change that
is used to start or invoke the security kernel is referred to as a
security reset.

Furthermore, a device manufacturer should arrange for the
generation or installation of the platform keys used by the 1,
implementation of Seal and Unseal. If the device is to be
recognized as part of a PKI (Public Key Infrastructure), the
manufacturer should also certify a public key for the platform.
This can be a platform key used directly by 1,, or alternatively
a key used by a higher layer.

Key generation and certification can be the responsibility
of the CPU manufacturer or alternatively some other party,
such as the OEM that assembles the CPU into a device.
Alternatively, the responsibility can be shared by multiple
such parties.

Once the security kernel is executing it can use the isolation
mechanisms described above to protect itself from code
executing at higher layers. Isolation in space will typically

10

15

20

25

30

35

40

45

50

55

60

65

18

involve privilege mode support, and isolation in time will
typically involve secrets being hidden from upper layers.

No additional platform support is needed to support space
isolation on most current processors—an existing privilege
mode or level will suffice (as long as the hardware resource
that allows access to the platform key can be protected from
higher layers).

To support time isolation, hardware assistance is used to
allow the security kernel to conceal the platform key before
passing control to higher layers. One way to provide platform
key security in the time isolation model is to employ a stateful
guard circuit that is referred to as a reset latch. A reset latch is
ahardware circuit that has the property that it is open follow-
ing reset or power-up, but any software at any time can pro-
grammatically close the latch. Once closed, the latch remains
closed until the next reset or power-up. A platform thatimple-
ments a time-isolated security kernel should gate platform
key access on the state of a reset latch, and the security kernel
should close the latch before passing control to higher layers.
As mentioned above, the security kernel should also take
additional actions such as clearing memory and registers
before passing control, but these action are the same as those
used at higher levels.

If the platform employs space isolation then the security
kernel uses privilege modes to protect itself and its platform
keys from programs (e.g., operating systems) that it hosts.
Furthermore, the security kernel establishes a system call
interface for invocation of the authentication operations.

If the platform employs space isolation, then the platform
should also contain storage that survives a security reset to
pass parameters to service routines. To invoke a service, an
operating system prepares a command and parameter block in
amemory location known to the security kernel and performs
a security reset. If the OS wishes to continue execution fol-
lowing the service call (as opposed to a simple restart) then it
and the security kernel should take extra measures to ensure
that this can be done reliably and safely.

The authenticated operation discussed herein can be used
for security in a variety of settings, such as protecting per-
sonal data from viruses, protecting confidential server data
from network attacks, network administration, copy protec-
tion, trustworthy distributed computing, and so forth. The
authenticated operation allows different programs, which can
execute on the same computer without being in a particular
trust relationship, to preserve their cryptographic resources
irrespective of the actions of other software.

Some of the discussions below make reference to an SSP
(Secure Service Processor). In one embodiment, an SSP is a
processor (for use in a computing device) that provides basic
cryptographic services to a computing device (e.g., the SSP
supports the gating functions described herein (e.g., as layer
1, of FIG. 2)). The SSP can make use of cryptographic keys,
and typically has one or more cryptographic keys that are
unique (or expected to be unique) to that SSP. The SSP can be
part of the CPU(s) of the device, or alternatively one or more
other processors. For example, the SSP may be a separate
chip or integrated circuit (IC) in a computing device.

In a different embodiment, an SSP is an appropriately
isolated software program that exposes the same functional-
ity to its callers as the previous embodiment does. The SSP
embodiment has access (directly or indirectly) to crypto-
graphic keys. A number of implementation options exist for
providing such access. For example, the SSP may call service
or disclosure guards in lower layers. Or the SSP may have
exclusive access to some part of persistent memory (e.g. hard
disk, flash memory, ROM, etc.) that contains the required

cryptographic key(s).

US 9,183,406 B2

19

In summary, an SSP is defined by the functionality it
exposes to principals in a higher layer. An SSP is a guard (as
described above) with access (direct or indirect) to crypto-
graphic keys. The SSP uses these keys to provide crypto-
graphic services to its callers. The following sections will
describe exemplary functionality an SSP exposes.

Example Operations

The following is a discussion of example implementations
of sealed storage operations and of remote authentication
operations. This section illustrates example implementations
of the Seal, UnSeal, Quote, and PKUnseal operations dis-
cussed above.

The following definitions are used in this section:

Name Type Description

DIGEST BYTE[20] 160-bit value. Commonly the output of a
SHA-1 hash operation.

SECRET BYTE[32] 256 bit value. Commonly a secret to be
sealed or pksealed.

ordinal INTEGER The ordinal component of each input and
output structure identifies the operation to
which it belongs and whether it is an input
or an output structure.

Kir 256-bit key Key for HMAC operations.

K 256-bit key AES key for Seal and UnSeal.

Ky 2048 bits * 3 RSA key pair for PKUnseal

Ko 2048 bits * 3 RSA key pair for Quote.

R 128 bits Random number

Additionally, access policies are referred to in this section
and the Bound Key Operations section below. The access
policy describes when the particular operations are functional
(that is, when they will work). The user of a computing device
is able to selectively switch off certain functions. For
example, the computing device (e.g., a SSP that implements
the Seal operation) includes a register called FeatureEnable.
One of the bits in the register is called MainEnable. If the user
sets MainEnable to false then none of the functions in these
sections will work any more. The access policy description
included with each function describes under which Fea-
tureEnable settings the function will work.

Seal

Definition

SSP__STATUS Seal(
[in] SECRET S,
[in] DIGEST Target[2],
[in] UINT32 MaxLen,
[out] UINT32* ActualLen,
[out] BYTE* SealedBlob

)

Parameters

Seal-Input ::= SEQUENCE {
ordinal INTEGER,
secret Secret,
target DigestPair }

Seal-Output ::= SEQUENCE {
ordinal INTEGER,
status INTEGER,
sealed-blob OCTET STRING }

Return Values

SSP_SUCCESS

Comments

The Seal operation forms an encrypted blob (group of bits)
that can only be decrypted by the corresponding Unseal
operation if the following evaluate true:

10

15

20

25

30

35

40

45

50

55

60

65

20

Is the encoding correct?

Is the MAC correct?

Is the currently running SK/SL (Security Kernel or Secure
Loader) the one named as the Target during the Seal
operation?

Seal adds internal randomness so that the output of the Seal
operation on the same input produces different results.
This ensures that Seal cannot be used as a hardware
device identifier. Seal also includes an identifier of the
program calling the Seal operation (e.g., a digest of the
calling program saved in a PCR register of the SSP, also
referred to herein as the PCR value) when the seal was
performed to provide integrity information to the
unsealer.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UseSymmKey==All|

FeatureEnable.UseSymmKey=—=AuthSL,

& SLKnown & AuthPCR[CurrentSL].UseSymmKey)

Actions

The Seal operation implements the following actions:

1. Generate a 128-bit random number R

2. Let DO be the current value of the PCR[0], D1=PCR[1]

3. DIGEST M=HMACI[K,](R]||S|ltarget||DO||D1)

4. C=AES[K](R||S|Target||DO|ID1|M)

5. Return SSP_SUCCESS with SealedBlob set to C

Unseal

Definition
SSP__STATUS Unseal(
[in] BYTE* SealedBlob,
[in] UINT32 SealedBlobLen,
[out] SECRET 8,
[out] DIGEST Source

)

Parameters

Unseal-Input ::= SEQUENCE {
ordinal INTEGER,

sealed-blob OCTET STRING }

Unseal-Output ::= SEQUENCE {
ordinal INTEGER,
status INTEGER,
secret Secret,

source Digest }

Return Values

SSP_SUCCESS
SSP_UNSEAL__ ERROR

Comments

The Unseal operation internally decrypts a blob generated
by the Seal operation and checks the following condi-
tions:

Is the encoding correct?

Is the current value of the PCR the one named as the Target
during the Seal operation?

If all checks succeed, then the secret and the sealer’s PCR
isreturned; otherwise an UNSEAL_ERROR is returned.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UseSymmKey==All|

FeatureEnable.UseSymmKey=—=AuthSL,

& SLKnown & AuthPCR[CurrentSL].UseSymmKey)

Actions

The Unseal operation implements the following actions:

1. M=AES-1[K](SealedBlob).

2. Interpret M as (BITS[128] R||SECRET SI1|DIGEST
TargetO||DIGEST Targetl|[DIGEST SealerQ|DIGEST
Sealerl|[DIGEST N).

US 9,183,406 B2

21

3. DIGEST D=HMACIK,]
(R||S1||TargetO|| Target1||Sealer0||Sealed).

4. If (Target0!=PCRJ[0]||Target1!=PCR[1]) return
SSP_UNSEAL_ERROR with S, Source set to zero.

5. If D!=N return SSP_UNSEAL_ERROR with S, Source
set to zero.

6. Else return SSP_SUCCESS with S set to S1 and Source
set to {Sealer0, Sealer1}.

Quote

Definition
SSP__STATUS Quote(
[in] BITSTRING d-ext,
[out] PKSignature SigBlob
)
Parameters
Quote-Input ::= {
ordinal
d-ext
Quote-output ::= {
ordinal
status
sig-blob
Return Values
SSP__SUCCESS
SSP__CRYPTO__ERROR

INTEGER,
Digest }

INTEGER,
INTEGER,
PKSignature }

Comments

The Quote operation instructs the SSP to sign the concat-
enation of the externally supplied D-EXT and the inter-
nal PCR value.

Access Policy

Allowed=FeatureEnable.MainEnable &
(FeatureEnable.UsePrivKey==Alll
FeatureEnable.UsePrivKey==AuthSL

& SLKnown & AuthPCR[CurrentSL].UsePrivKey)
Actions

The Quote operation implements the following actions:

1. The SSP forms a message M consisting of the concat-
enation of the identifier for message type QuoteMes-
sage, D-EXT and the contents of the PCR register, under
DER (Distinguished Encoding Rules) encoding:

SEQUENCE {

message-type PKMessageType,

d-ext Digest,
per DigestPair

2. The SSP then uses K, PRIV to generate a signed mes-
sage over M according to the default implementation of
RSASSA-PSS-SIGN as specified in PKCS #1 V2.1. If
the function returns an error then return SSP_CRYPTO_
ERROR with SigBlob set to 0.

3. The SSP returns SSP_SUCCESS and the signature value
just calculated together with
signature Algorithm=rSASS A-PSS-Default-Identifier
in SigBlob.

PKUnseal

Definition

SSP__STATUS PK_ Unseal(
[in] PKCiphertext SealedBlob,
[out] SECRET Secret

10

15

20

25

30

35

40

45

50

55

60

o
o

-continued
Parameters
PkUnseal-Input ::= {
ordinal INTEGER,

pk-sealed-blob
PkUnseal-output ::= {

ordinal

status

secret
Return Values
SSP__SUCCESS
SSP_CRYPTO__ERROR
SSP_BAD_ DATA_ ERROR

PKCiphertext }

INTEGER,
INTEGER,
Secret }

Comments

The PKUnseal operation takes an encrypted blob of length
416 bits, and of a particular format. The blob is
decrypted, and if the decryption and decoding is suc-
cessful, the 416-bit message is interpreted as the concat-
enation of a secret value and the PCR value that is
permitted to receive the decrypted value.

If the current PCR value is equal to that specified in the
encrypted blob, the secret is revealed; otherwise an error
is returned.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey=—=Alll

FeatureEnable.UsePrivKey=—AuthSL

& SLKnown & AuthPCR[CurrentSL.].UsePrivKey)

Actions

The PKUnseal operation implements the following
actions:

1. The SSP tests if the AlgorithmlIdentifier in pk-sealed-
blob is sspV1BoundKey.

2.The SSP internally decrypts SealedBlob according to the
default implementation of RSAES-OAEP-DECRYPT
as specified in PKCS #1 V2.1, obtaining a plaintext
message M.

3. If the output of the decoding operation is “decoding
error”’ return SSP_BAD DATA_ERROR with Secret set
to zero.

4. Otherwise, the recovered message M should be of the
following form under DER encoding:

SEQUENCE {
message-typePKMessageType,
secret
target

Secret,
Digest }

Furthermore, Secret should consist of 256 bits (=32 octets)
and target should consist of 160 bits (=20 octets). The
message type should be sspV1PKSealedMessage. If any
of these conditions is not met, return SSP_BAD_DA-
TA_ERROR with Secret set to zero, otherwise:

1. If target!=PCR return SSP_BAD_DATA_ERROR with
Secret set to zero.

2. Iftarget==PCR return SSP_SUCCESS with Secret set to
secret.

Bound Key Operations

Additionally, a set of bound key functions or operations
allow cryptographic keys to be created and certified locally
(e.g., by the SSP), and also allow cryptographic keys to be
communicated from trustworthy remote parties (e.g., com-
municated to the SSP).

Bound key functionality is characterized as follows:

1. A service guard (e.g. SSP) at some system layer accesses
a bound key directly. Each bound key has an associated

US 9,183,406 B2

23

condition(s) that determines which guard(s) may access
the bound key. The condition(s) is expressed implicitly.
That is, the bound key is encrypted, such that only one or
some set of guards have the keys to decrypt it.

2. A service guard with access to a bound key exposes
functions that require the use of the bound key (e.g.
signing, MAC, encryption, decryption) to principals in a
higher layer. Each bound key may have an associated
usage condition(s), in which case the guard will only
service requests that satisty the associated condition(s).

3. Boundkeys are contained in cryptographically protected
data structures (also referred to herein bound key blobs).
Bound key blobs are self protecting and can be stored
outside trusted environments.

Bound keys have the following benefits:

Each principal can be allowed to have its own bound key.
Furthermore, each principal can be allowed to have arbi-
trarily many bound keys. This allows for more fine
grained policy settings and improves privacy in certain
applications. Thus, guards need not be restricted to hav-
ing only one or a few keys that are used to service
requests from all principals.

The bound key is not disclosed outside the authorized
service guard(s). Thus, a compromise of a principal (e.g.
due to a programming error) will not lead to a compro-
mise of any bound key. In one embodiment, the service
guard (SSP) is implemented in hardware. In this case,
bound keys cannot be compromised due to malicious or
incorrect software.

The bound key functions provide protection for crypto-
graphic keys. Bound keys can be generated by remote parties
or they can be created locally through the GenBoundKey
command.

Bound keys that are generated locally may emit a “quote”
certificate that can be used to provide remote parties with
evidence of the type of the public key, the type of key gener-
ated, the state of the machine during generation, and the
(optional) condition (e.g. digests) to which the key is bound.

Bound keys include one or more of the following elements:

The key usage (e.g., BoundSign, BoundQuote, BoundP-
kUnseal, BoundPkDecrypt, BoundMAC, BoundEn-
crypt, or BoundDecrypt). This element is optional. If
included, this element restricts the bound key to being
used only with the identified function type.

A condition element (as described above) that specifies
under which conditions the bound key can be used (also
referred to as bound key usage condition(s)). For
example, the condition(s) may be represented in the
form of one or more digests of programs. In this case, the
bound key must only be used by or on behalf of pro-
grams whose digest is specified. Other examples of con-
ditions include time constraints, logical formulas, and
executable programs, as described above. This element
is optional. If the element is omitted, some default con-
dition applies. For example, the default condition may
not restrict access to the bound key (vacuous condition).

The cryptographic key (the bound key) or some data that
allows the key to be computed.

One or more conditions (as described above) under which
the bound key usage condition can be changed. Such
changing is also referred to as bound key migration, and
the condition(s) a migration condition(s). This element
is optional. If the element is omitted, some default con-
dition applies. For example, the default conditions may
be “always false”, such that the digests (if present) can-
not be changed.

5

10

15

20

25

30

35

40

45

50

55

60

65

24

One or more conditions, under which the set of service
guards that can directly access the bound key can be
changed. Such changing is also referred to as bound key
exportation, and the condition(s) an export condition(s).
This element is optional.

Cryptographic Protection of Bound Keys

Bound keys have the same cryptographic requirements as
the sealed storage and attestation functions described above
(Seal, UnSeal, PKUnseal). In particular, locally generated
bound keys could be protected by any of the cryptographic
implementations of the Store and Retrieve functions
described above. In each case, the confidentiality of the bound
key itself is protected and the integrity of the overall data
structure is protected in order to ensure that the different
conditions that govern the usage of the bound key have not
been corrupted. As described earlier, this can be achieved by
various combinations of symmetric ciphers or public key
encryption algorithms with MACs or digital signatures. In
one embodiment, the bound key data structure is public key
encrypted.

Functions

In certain embodiments, bound keys can be used in one or
more of the following functions:

BoundSign

BoundQuote

BoundPkDecrypt

BoundPkUnseal

BoundMAC

BoundEncrypt

BoundDecrypt

GenBoundKey

BoundKeyMigrate

BoundKeyExport
In each of these functions, the bound key blob (the group of
bits in the data structure) and the data to be operated on by the
key contained within the bound key blob are provided as
parameters to the bound-key functions. If the key usage ele-
ment is included in the bound key blob, then the SSP ensures
that the bound key is used for the correct purpose (for
example, a key that was created with type “BoundQuoteKey”
can only be used in a BoundQuote operation).

In some implementations, the bound key is a private key of
apublic/private key pair. In such implementations, the bound
key blob can contain the private key, or alternatively some
data that allows the key to be computed. For example, a
private key fragment may be contained in the bound key blob,
and this fragment, in conjunction with the corresponding
public key, can be used to reconstruct the private key of the
public/private key pair.

The BoundSign operation receives a data input that is to be
signed using the bound key, and also receives a bound key
blob. The SSP recovers the private signing key from the
bound key blob and then generates a digitally signed message
over the data input using the recovered signing key. The SSP
then outputs the digitally signed message. If the bound key
blob is corrupted or the bound key usage condition(s), if any,
are not satisfied, then the SSP does not perform the operation.
The data input can thus be digitally signed using the recov-
ered private key without the private key being revealed by the
SSP.

The BoundQuote operation receives as an input data to be
signed and a bound key blob. The SSP recovers the private key
from the bound key blob and then uses the recovered signing
key to generate a signature over the data input to the operation
and the current PCR value (e.g., an identifier, such as a digest,
of'the program invoking the BoundQuote operation) as in the
Quote operation described above. The SSP then outputs the

US 9,183,406 B2

25

digitally signed message. If the bound key blob is corrupted or
the bound key usage condition(s), if any, are not satisfied, then
the SSP does not perform the operation. In one implementa-
tion, the BoundQuote operation is similar to the BoundSign
operation, but differs in that the current PCR value is used in
the BoundQuote operation.

The BoundPkDecrypt operation receives as an input
ciphertext and a bound key blob. The SSP recovers the private
key from the bound key blob and then uses the recovered
private bound key to decrypt the input ciphertext. The
decrypted data is then output by the BoundPkDecrypt opera-
tion. Ifthe bound key blob is corrupted or the bound key usage
condition(s), if any, are not satisfied, then the SSP does not
perform the operation.

The BoundPkUnseal operation receives as an input cipher-
text and a bound key blob. The SSP recovers the private key
from the bound key blob and then uses the private key to
decrypt the input ciphertext as in the PKUnseal operation
described above. The decrypted data is then output by the
BoundPkUnseal operation. If the bound key blob is corrupted
or the bound key usage condition(s), if any, are not satisfied,
then the SSP does not perform the operation.

The BoundMAC operation receives a data input, over
which the MAC is to be computed using the bound key, and
also receives a bound key blob. If the bound key blob is
corrupted or the bound key usage condition(s), if any, are not
satisfied, then the SSP does not perform the operation. Oth-
erwise, the SSP recovers the bound key from the bound key
blob and then generates a message authentication code
(MAC) over the data input using the recovered bound key.
The SSP then outputs the computed MAC. Thus, a MAC for
the data input can be computed using the recovered bound key
without the bound key being revealed by the SSP.

The BoundEncrypt operation receives a data input, which
is to be encrypted using the bound key, and also receives a
bound key blob. If the bound key blob is corrupted or the
bound key usage condition(s), if any, are not satisfied, then the
SSP does not perform the operation. Otherwise, the SSP
recovers the bound key from the bound key blob and then
encrypts the data input using the recovered bound key. The
SSP then outputs the computed ciphertext. Thus, the data
input can be encrypted using the recovered bound key without
the bound key being revealed by the SSP.

The BoundDecrypt operation receives a data input, which
is to be decrypted using the bound key, and also receives a
bound key blob. If the bound key blob is corrupted or the
bound key usage condition(s), if any, are not satisfied, then the
SSP does not perform the operation. Otherwise, the SSP
recovers the bound key from the bound key blob and then
decrypts the data input using the recovered bound key. The
SSP then outputs the computed plaintext. Thus, the data input
can be decrypted using the recovered bound key without the
bound key being revealed by the SSP.

The GenBoundKey operation causes the SSP to create a
new bound key. The new bound key is a cryptographic key,
and a new bound key blob is generated that includes the newly
generated key. It is to be appreciated that the bound key blob
does not always have to include the entire key. For example,
if the newly generated key is a public/private key pair, it may
be sufficient to include the private key in the bound key blob.

The new bound key blob is bound to one or more guards—
typically the SSP that is executing the operation (e.g., by
cryptographically protecting the new bound key blob analo-
gous to the Store function described above, or otherwise
securing the new bound key blob so that it can be retrieved
only by the SSP). The GenBoundKey operation may also
have parameters that determine various aspects of the new

5

10

15

20

25

30

35

40

45

50

55

60

26

bound key blob and data describing these parameters are
attached to the newly generated private key in some integrity
protected way (e.g., the data is made part of the new bound
key blob). Examples of this data, as discussed above, include
the migration condition, the bound key usage condition, and
so forth. The new bound key blob is then output by the
GenBoundKey operation.

In general, a bound key may be any kind of cryptographic
key, including a symmetric key or a public-private key pair.
The exact key type depends on the bound key operation(s) in
which it is to be used. For example, a bound key to be used in
BoundMAC would typically be a symmetric key, whereas a
bound key to be used in BoundSign would typically be a
public/private signature key pair. The key type may be speci-
fied as a parameter to GenBoundKey.

The BoundKeyMigrate operation allows the usage condi-
tion of a bound key to be changed. The SSP verifies that one
or more migration conditions are satisfied. Any of a variety of
conditions may be used with the BoundKeyMigrate operation
(e.g., any condition, analogous to those discussed above with
reference to the Seal and UnSeal operations, that identifies
when and/or to whom the data can be migrated). If the veri-
fication is not successfully made, then the operation fails. If
the verifications is successfully made, then the guard pro-
duces a new bound key blob, in which the bound key usage
condition has been changed as requested.

The BoundKeyExport operation instructs the SSP to
change the set of guards (SSPs) that can directly access the
bound key. The SSP verifies that one or more conditions are
satisfied. Any of a variety of conditions may be used with the
BoundKeyExport operation (e.g., any condition, analogous
to those discussed above with reference to the Seal and
UnSeal operations, that identifies when and/or to whom the
data can be exported). If the verification is not successfully
made, then the operation fails. If the verification is success-
fully made, then the SSP changes the cryptographic protec-
tion on the bound key blob as requested. In one embodiment,
the SSP encrypts the bound key data structure with one or
more new keys.

An example of a class of conditions that the creator
(whether local or remote) of a bound key can specify is that
the bound key may only be used on behalf of principals whose
program digests have a particular value(s). In this case, the
bound key operations check the requesting principal’s digest
after internal retrieval of the bound key blob, and fail without
performing additional computation if the digest is not as
specified in the bound key blob.

A bound key blob is typically tied or bound to a particular
SSP by means of a cryptographic operation that requires a
unique key ofthe particular SSP to succeed. Examples of such
operations are MAC, digital signatures, encryption, and com-
bined encryption and integrity verification functions.
Example Bound Key Operations

In one implementation, migration is authorized by way of
a local migration certificate or an export certificate issued by
the authorizing entity. The local-migration certificate is a
default of RSASSA-PSS-SIGN operation over the following
data structure:

Bound-migration-info ::= SEQUENCE {
source-bound-blob-digest
dest-PCR

Digest,
DigestPair

Local SSP-migration is requested using the BoundKeyMi-
grate operation. To authorize local-migration, the SSP is pro-

US 9,183,406 B2

27

vided with a Bound-migration-info structure referring to this
bound key, and a properly formed certificate over this struc-
ture provided by the authorized entity. If the migration autho-
rization is acceptable, the SSP rebinds the key for the new
PCR, with all other key attributes remaining unchanged (e.g.,
if the key was not originally bound to a PCR value, it will not
be when rebound). The source-bound-blob-digest is the
digest of the encrypted external form of the bound key.

Remote-migration is achieved through the BoundKeyEx-
port function with, for example, a Bound-export-info struc-
ture signed by the authorizing entity:

Bound-export-info ::= SEQUENCE {

source-bound-blob-digest Digest,
dest-pubkey RSAPublicKey
dest-PCR DigestPair

The authorizing entity is in complete control of the device
or software module to which the key is re-bound when a key
is marked exportable.

The bound key operations use a PKCiphertext, which is a
sequence of type Bound-key-blob encrypted with the plat-
form public encryption key as follows:

Bound-key-blob ::=
message-type

SEQUENCE {
PKMessageType,

key-type Bound-key-type,

bound-to-PCR BOOL,

bound-to DigestPair,

migrateable Bool,

migrate-auth Digest,

exportable Bool,

export-auth Digest,

pub-key-digest Digest,

bound-key PKCompressedPrivateKey }
where:

Bound-key-type ::= INTEGER {

BoundsignKey,

BoundQuoteKey

BoundDecryptKey,

BoundPkUnsealKey }

The bound-to-PCR member is a flag that indicates whether
the bound-to Digest field must match the current PCR value in
order for the bound key to be used. {migrateable, migrate-
auth} indicates whether the key is migrateable, and if so under
the control of what authority (if migrateable is false, then the
migrate-auth value is unimportant). {exportable, export-
auth} indicates whether the key is exportable, and if so under
the control of what authority (if exportable is false, then the
export-auth value is unimportant). Pub-key-digest is the
digest of the corresponding public key to provide a strong
binding between the PK CompressedPrivateKey and the pub-
lic key that is needed to recover the private key.

In one implementation, if a bound key is created locally
with the GenBoundKey function, the SSP creates a signature
over a data structure detailing the public properties of the key
that was just generated, and the configuration of the system
during bound key export.

Bound-key-pub-info ::= SEQUENCE {
message-type PKMessageType,
// sspV1BoundKeyGenMessage
sig-nonce Digest,
key-type Bound-key-type,
bound-to-PCR BOOL,
bound-to DigestPair,

10

15

20

25

30

40

55

60

28

-continued
migrateable Bool,
migrate-auth Digest,
exportable Bool,
export-auth Digest,
creator-PCR DigestPair
bound-pub-key Digest }

In this data structure, key-type, bound-to-PCR, bound-to,
migrateable, migrate-auth, exportable, and export-auth are
the bound key characteristics of the newly generated key.
Creator-PCR is the PCR that was active when the key was
exported, and bound-pub-key is the digest of the newly cre-
ated public key. sig-nonce is the digest-sized value passed in
when bound-key generation was requested.

Exemplary definitions of the BoundSign, BoundQuote,
BoundPkDecrypt, BoundPkUnseal, GenBoundKey, Bound-
KeyMigrate, and BoundKeyExport operations are as follows.

BoundSign

Definition
SSP__STATUS BoundSign(
[in] PKCiphertext BoundKeyBlob,
[in] RSAPublicKey PubPartOfBoundKey,
[in] BITSTRING DataToBeSigned
[out] PKSignature sig-blob

)

Parameters

BoundSign-Input ::= {
ordinal INTEGER,
bound-key BoundKeyBlob,

bound-pub-key
data-to-be-signed
BoundSign-output ::= {

RSAPublicKey,
OCTET STRING }

ordinal INTEGER,

status INTEGER,

sig-blob PKSignature }
Return Values

SSP_SUCCESS
SSP_CRYPTO__ERROR
SSP_BAD_ DATA_ERROR
SSP_UNSEAL_ERROR

Comments

The BoundSign operation takes PKciphertext of type
sspV1BoundKey containing a BoundKeyBlob of type
BoundSignKey and the corresponding public key. If either of
these conditions is not met, or if the sequence fails to decode,
then the operation fails with SSP_CRYPTO_ERROR.

If Bound-to-PCR is set, the SSP checks that the current
PCR value is as specified in the Bound-key-blob sequence. If
it is not, the SSP returns SSP_CRYPTO_ERROR.

Finally, the SSP signs the input message with the decrypted
private key.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey=—=Alll

FeatureEnable.UsePrivKey=—AuthSL

& SLKnown & AuthPCR[CurrentSL.].UsePrivKey)

Actions

The BoundSign operation implements the following

actions:

1. The SSP tests if the AlgorithmlIdentifier in pk-sealed-

blob is sspV1BoundKey.

2.The SSP internally decrypts SealedBlob according to the

default implementation of RSAES-OAEP-DECRYPT
as specified in PKCS #1 V2.1, obtaining a plaintext
message M.

US 9,183,406 B2

29

3. If the output of the decoding operation is “decoding
error” return SSP_CRYPTO_ERROR with Secret set to
Zero.

4. Otherwise, the recovered message M should be a DER
encoding of the form Bound-key-blob, with type Bound-
SignKey. If not, the SSP should emit SSP_CRYPTO_
ERROR.

5. If bound-to-PCR is TRUE, then the bound-to should be

compared to the current PCR value. If the value is not the
same, the SSP should output SSP_CRYPTO_ERROR.

6. The SSP then recovers the bound private key using the
associated public key provided. If this fails, the SSP
returns SSP_CRYPTO_ERROR. If it succeeds, the SSP
uses the recovered private key bound-key to generate a
signed message over the input message DataToBe-
Signed according to the default implementation of
RSASSA-PSS-SIGN as specified in PKCS #1 V2.1 If

the function returns an error, then return
SSP_CRYPTO_ ERROR with SigBlob set to 0.
7. Return SSP_SUCCESS
BoundQuote
Definition

SSP__STATUS BoundQuote(

] PKCiphertext BoundKeyBlob,
] DIGEST DataToBeSigned

ut] PKSignature sig-blob

iy
iy

i
[i
[o

)

Parameters
BoundQuote-Input ::= {
ordinal INTEGER,
bound-key BoundKeyBlob,
bound-pub-key RSAPublicKey,
data-to-be-quoted Digest }
BoundQuote-output ::= {
ordinal INTEGER,
status INTEGER,
sig-blob PKSignature }
Return Values

SSP_SUCCESS
SSP__CRYPTO_ERROR
SSP__BAD_ DATA_ ERROR
SSP__UNSEAL__ ERROR

Comments

The BoundQuote operation takes PKciphertext of type
sspV1BoundKey containing a BoundKeyBlob of type
BoundQuoteKey. If either of these conditions is not met,
orifthe sequence fails to decode, then the operation fails
with SSP_CRYPTO_ERROR.

If Bound-to-PCR is set, the SSP checks that the current
PCR wvalue is as specified in the Bound-key-blob
sequence. If it is not, the SSP returns SSP_CRYPTO_
ERROR.

Finally, the SSP quotes the input message with the
decrypted private key.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey==Alll

FeatureEnable.UsePrivKey==AuthSL

& SLKnown & AuthPCR[CurrentSL].UsePrivKey)

Actions

The BoundQuote operation implements the following
actions:

1. The SSP tests if the AlgorithmIdentifier in pk-sealed-
blob is sspV1BoundKey.

2. The SSP internally decrypts SealedBlob according to the
default implementation of RSAES-OAEP-DECRYPT
as specified in PKCS #1 V2.1, obtaining a plaintext
message M.

10

15

20

30

35

40

45

50

55

30

3. If the output of the decoding operation is “decoding
error” return SSP_CRYPTO_ERROR with Secret set to
Zero.

4. Otherwise, the recovered message M should be a DER
encoding of the form Bound-key-blob, with type Bound-
QuoteKey. If not the SSP should emit SSP_CRYPTO_
ERROR.

5. If bound-to-PCR is true, then the bound-to should be
compared to the current PCR value. Ifthe value is not the
same, the SSP should output SSP_CRYPTO_ERROR.

6. The SSP then uses the recovered private key fragment
and the public key to reconstruct the private key. The
private key can be reconstructed as follows. In general,
RSA keys are made of anumber N=p*q (N is the product
of two prime numbers p and q), and two exponents e
(encryption exponent) and d (decryption exponent). N
and e form the public key; dis the private key. In general,
dis aslong as N (e.g. 2048 bits). If the factorization of N
is known (i.e., if p and q are known) then the private key
d can be readily determined. Note that p and q are only
half'as long as N. So, rather than storing d as the private
key, we store p. Then, given the public key N, eand p, the
value q=N/p can be computed, and then the value d
determined given p and q.

The private key is then used to generate a signature mes-
sage over the input message DataToBeSigned and the
current PCR value according to the specification in the
Quote operation defined above. Ifthe function returns an
error then return SSP_CRYPTO_ERROR with SigBlob
set to 0.

7. Return SSP_SUCCESS

BoundPkDecrypt

Definition
SSP__STATUS BoundPkDecrypt(
] PKCiphertext BoundKeyBlob,

[in
[in] RSAPublicKey BoundPubKey,

[in] PKCiphertext DataToBeDecrypted,
[out] Secret decryptedData

)

Parameters

BoundPkDecrypt-Input ::= {
ordinal INTEGER,
bound-key BoundKeyBlob,

RSAPublicKey,
PKCiphertext }

bound-pub-key
pk-sealed-blob
BoundPkDecrypt-output ::= {

ordinal INTEGER,

status INTEGER,

d-blob Secret }
Return Values

SSP_SUCCESS
SSP_UNSEAL__ERROR
SSP_CRYPTO__ERROR
SSP_BAD_ DATA_ERROR

Comments

The BoundPkDecrypt operation takes PKciphertext of
type sspV1BoundKey containing a BoundKeyBlob of
type BoundDecryptKey.

If either of these conditions is not met, or if the sequence

fails to decode, then the operation fails with SSP_CRYPTO_

60 ERROR.

If Bound-to-PCR is set, the SSP checks that the current

PCR value is as specified in the Bound-key-blob sequence. If
it is not, the SSP returns SSP_CRYPTO_ERROR.

Finally, the SSP decrypts the input message with the

65 decrypted private key from the bound-blob.

Access Policy
Allowed=FeatureEnable.MainEnable &

US 9,183,406 B2

31

(FeatureEnable.UsePrivKey==Alll
FeatureEnable.UsePrivKey==AuthSL

& SLKnown & AuthPCR[CurrentSL].UsePrivKey)
Actions

The BoundPkDecrypt operation implements the following

1.

actions:
The SSP tests if the AlgorithmlIdentifier in pk-sealed-
blob is sspV1BoundKey.

2. The SSP internally decrypts SealedBlob according to the

32
Access Policy
Allowed=FeatureEnable.MainEnable &
(FeatureEnable.UsePrivKey=—=Alll
FeatureEnable.UsePrivKey=—AuthSL
& SLKnown & AuthPCR[CurrentSL.].UsePrivKey)

Actions

The BoundPkUnseal operation must implement the fol-

lowing steps:

default implementation of RSAES-OAEP-DECRYPT 10 1. The SSP tests if the AlgorithmIdentifier in pk-sealed-
as specified in PKCS #1 V2.1, obtaining a plaintext blob is s§pV1B0undKey. .
message M. 2.The SSP internally decrypts SealedBlob according to the

3. If the output of the decoding operation is “decoding default }mple;mentatlon of RSAES'O,A,EP'DECRYPT
error” return SSP CRYPTO ERROR with Secret set to as specified in PKCS #1 V2.1, obtaining a plaintext
Jero ’ - - 15 message M.

4. Otherwise, the recovered message M should be a DER 3. If the output of the decoding operatiop is “decoding
encoding of the form Bound-key-blob, with type Bound- error,” return SSP_ CRYPTO_ERROR with Secret set to
DecryptKey. If not, the SSP should emit SSP_CRYP- Zer0- .

TO ERROR. 20 4. OtherWlse, the recovered message M shpuld be a DER

5. If bound-to-PCR is true, then the bound-to should be encoding of the form Bound-key-blob,w1.t h type Bound-
compared to the current PCR value, ifthe value is not the ?gcr]}g]ggg}[/{ If not, the SSP should emit SSP_CRYP-
same, the SSP should output SSP_CRYPTO_ERROR. — : .

6. The SSP recovers the private key using the provided 5. If bound-to-PCR is true, then the bound-to should be
public key. The private key can be recovered as dis- 25 compared to the current PCR value. Ifthe value is not the
cussed above in the BoundQuote operation. It then uses same, the SSP should output SSP_CRYPTO_ERROR.
the recovered private bound-key to decrypt the 6. The SSP recreates the private key using the bound key
pk-sealed-blob using the default implementation of blob. The private key can be recovered as discussed
RSAES-OAEP-DECRYPT as specified in PKCS #1 above in the BoundQuote operation. It then uses the
V2.1, obtaining a plaintext message M. 30 recovered private bound-key to unseal the pk-sealed-

7. The SSP sets d-blob to M. blob using the steps described in the PK_Unseal com-

8. Return SSP_SUCCESS. mand.

BoundPkUnseal 7. If the PCR named in the unsealed blob does not match

the current PCR, the SSP returns SSP_CRYPTO_ER-
35 ROR.
Definition 8. Otherwise, the SSP sets d-blob to M.
SSP__STATUS BoundPKUnseal(
[in] PKCiphertext BoundKeyBlob, 9. Return SSP_SUCCESS.
[in] RSAPublicKey BoundPubKey, GenBoundKey
[in] PKCiphertext DataToBeUnsealed
[out] Secret decryptedData 40
%’arameters Definition
BoundPKUnseal-Input ::= { SSP—lSTATUS GenBoundKey(
ordinal INTEGER, [in] BoundKeyType KeyType,
bound-key BoundKeyBlob, [}H] BOOL BoundToPecr,
bound-pub-key RSAPublicKey, 45 [}H] DIGEST BoundTo[Z],
pk-sealed-blob PKCiphertext } [}n] BOOL mlg@tea.ble,)
BoundPKUnseal-output ::= { [in] DIGEST migrationAuthority,
ordinal INTEGER, [in] BOOL exportable,
status INTEGER. [in] DIGEST exportAuthority,
d-blob Secret] [in] DIGEST SigNonce,
Return Values [out] BoundKey bound-key,
SSP_ SUCCESS 50 [out] PKPublickey newPubKey,
SSP:UNSE AL_ERROR [out] PKSignature boundKeyQuoteBlob
SSP_CRYPTO__ERROR)
SSP_BAD_ DATA_ERROR Parameters
GenBoundKey-Input ::= {
ordinal INTEGER,

Comments 55 key-type Bound-key-type,

The BoundPkUnseal operation takes PKciphertext of type Egﬁgig'pcr g(i?ggs%l,’air
sspV1BoundKey containing a BoundKeyBlob of type migrateable BOOL,
BoundPKUnsealKey. If either of these conditions is not met, migrate-auth Digest,
or if the sequence fails to decode, then the operation fails with exportable BOOL,
SSP_CRYPTO_ERROR. 60 :fg’iﬁniiﬂl g;gz:?

If Bound-to-PCR is set, the SSP checks that the current

PCR wvalue is as specified in the Bound-key-blob GenBoundKey-output ::= {

sequence. If it is not, the SSP returns SSP_CRYPTO_ ordinal INTEGER,

e DECE
- Ttext,

Finally, the SSP uses PK_Unseal to unseal the input mes- 65 bgﬁd_pu% RS Afukiifﬁey,
sage with the decrypted private key from the bound- sig-blob PKSignature }

blob.

US 9,183,406 B2

33

-continued

34

-continued

Return Values
SSP_SUCCESS
SSP__BAD_ DATA_ERROR

Return Values
SSP__SUCCESS
SSP_BAD_ DATA_ERROR

Comments

The GenBoundKey operation causes the SSP to generate a
new bound-key blob containing the newly generated
private key. The bound-key blob is encrypted with the
SSP’s own public key.

GenBoundKey also outputs the public key of the newly
generated key-pair, a quote-signature that indicates that
the SSP generated the key, its characteristics, and the
PCR value when the key was generated.

The caller of GenBoundKey also indicates the type of
bound-key to be created: whether it is for signing, quot-
ing, unsealing with BoundPkUnseal, or decrypting with
BoundPkDecrypt. The caller also specifies whether the
bound-key should be bound to a PCR, and if so, the PCR
value to which it is bound.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey==Alll

FeatureEnable.UsePrivKey==AuthSL

& SLKnown & AuthPCR[CurrentSL].UsePrivKey)

Actions

The GenBoundKey operation implements the following
actions:

1. The SSP generates a new public private RSA key-pair.
The SSP can optionally generate key-pairs when the SSP
is otherwise idle, and store a small cache of keys in
non-volatile memory for immediate retrieval.

2. The SSP internally generates a bound-key structure con-
taining the newly generate private key and the bound-
key type and other parameters provided by the caller.

3. The SSP encrypts the bound-key blob with the platform
public encryption key.

4. The SSP generates a signed blob of a bound-key-pub-
info containing the properties of the newly created key,
the PCR values at the time of key creation and the sup-
plied nonce.

5. The SSP outputs the encrypted bound-key blob, the
newly generated public key, and the quoted key blob.

6. Return SSP_SUCCESS.
BoundKeyMigrate

Definition

SSP__STATUS BoundKeyMigrate(
[in] PKCiphertext BoundKeyBlob,
[in] RSAPublicKey PubPartOfBoundKey,
[in] BOUND_ MIGRATION__INFO MigrationInfo,
[in] RSA_SIG SigOnMigrationInfo

)

Parameters

GenBoundKey-Input ::= {
ordinal
migration-info
migration-pubkey

INTEGER,
Bound-migration-info,
RSAPublicKey,

migration-auth PKSignature
GenBoundKey-output ::= {

ordinal INTEGER,

status INTEGER,

re-bound-blob PKCiphertext,

15

25

30

35

40

45

50

55

60

65

Comments

The BoundKeyMigrate operation instructs the SSP to re-
bind a key to a different PCR value in a controlled
manner. The original key-creator, local or remote, names
the migration-authorization entity. Only bound keys
marked migrateable can be migrated, and these will only
be migrated if the SSP is provided with an appropriated
signed Boundmigration-info structure. Appropriately
signed means signed with the public key whose digest is
contained within the bound key blob. The other bound
key attributes are not changed.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey=—=Alll

FeatureEnable.UsePrivKey=—AuthSL

& SLKnown & AuthPCR[CurrentSL.].UsePrivKey)

Actions

The BoundKeyMigrate operation implements the follow-
ing actions:

1. The SSP internally decrypts the bound-key structure and
interprets it as a Bound-key-blob. If the decoding fails,
the SSP returns SSP_CRYPTO_ERROR.

2. The SSP validates that Bound-export-info refers to the
same key, that the signature is properly formed, and that
the digest of the public key of the signer is as named in
the ‘migrateable’ field of the Bound-key-blob.

3. The SSP checks that the key is migrateable. If not, the
SSP returns SSP_CRYPO_ERROR

4. If the key is bound to a PCR, the SSP checks that the
current PCR is that named in the key-blob.

5. The SSP replaces the PCR value with that named in the
dest-PCR field of the Bound-migration-info.

6. The SSP re-encrypts the bound-key-blob, and exports
the re-encrypted structure.

6. Return SSP_SUCCESS.

BoundKeyExport

Definition
SSP__STATUS BoundKeyExport(

in] PKCiphertext BoundKeyBlob,

in] RSAPublicKey PubPartOfBoundKey,
in] BOUND__EXPORT_INFO Exportlnfo,
in] RSA__SIG SigOnExportInfolnfo,

out] PKCipherText ReBoundBlob

[
[
[
[
[

)

Parameters
BoundKeyExport-Input ::= {
ordinal INTEGER,
bound-key PKCipherText,
bound-pub-key RSAPublicKey,
export-info Bound-export-info,
export-auth PKSignature,
GenBoundKey-output ::= {
ordinal INTEGER,
status INTEGER,
re-bound-blob PKCiphertext,
Return Values

SSP_SUCCESS
SSP_BAD_ DATA_ERROR

US 9,183,406 B2

35

Comments

The BoundKeyExport operation instructs the SSP to export
the private part of a bound key to a remote entity in a
format consistent with bound keys on the source device
in a controlled manner. The original key-creator, local or
remote, names the export-authorization entity. Only
bound keys marked exportable can be exported, and
these will only be exported if the SSP is provided with an
appropriated signed Bound-export-info structure.
Appropriately signed means signed with the public key
whose digest is contained within the original bound key
blob. BoundKeyExport allows appropriately authorized
callers to specity the public key and PCR value of the
target entity to which the key should be rebound. There
is no specific requirement that the external entity be an
SSP, but the newly bound blob follows bound-key con-
ventions to allow remote SSPs to consume exported
bound keys directly.

Access Policy

Allowed=FeatureEnable.MainEnable &

(FeatureEnable.UsePrivKey==Alll

FeatureEnable.UsePrivKey==AuthSL

& SLKnown & AuthPCR[CurrentSL].UsePrivKey)

Actions

The BoundKeyExport operation implements the following
actions:

1. The SSP internally decrypts the bound-key structure and
interprets it as a Bound-key-blob. If the decoding fails,
the SSP returns SSP_CRYPTO_ERROR.

2. The SSP validates that Bound-export-info refers to the
same key, that the signature is properly formed, and that
the digest of the public key of the signer is as named in
the ‘export’ field of the Bound-key-blob.

3. The SSP checks that the key is exportable. If not, the SSP
returns SSP_CRYPO_ERROR.

4. If the key is bound to a PCR, the SSP checks that the
current PCR is that named in the key-blob.

5. The SSP internally generates a new bound-key-blob
structure containing the parameters from the original
bound-key-blob structure and the new PCR value sup-
plied in Bound-export-info. All other parameters remain
the same.

6. The SSP encrypts the new bound-key blob with the
public encryption key supplied in Bound-export-info.

7. The newly bound key is exported.

8. Return SSP_SUCCESS.

General Computer Environment

FIG. 12 illustrates a general computer environment 400,
which can be used to implement the techniques described
herein. The computer environment 400 is only one example
of' a computing environment and is not intended to suggest
any limitation as to the scope of use or functionality of the
computer and network architectures. Neither should the com-
puter environment 400 be interpreted as having any depen-
dency or requirement relating to any one or combination of
components illustrated in the exemplary computer environ-
ment 400.

Computer environment 400 includes a general-purpose
computing device in the form of a computer 402. Computer
402 can be used, for example, to implement principal 102 and
guard 104 of FIG. 1, or the layers of FIG. 2. The components
of computer 402 can include, but are not limited to, one or
more processors or processing units 404 (optionally includ-
ing one or more security processors or coprocessors (such as
an SSP) and/or one or more cryptographic processors or
coprocessors), a system memory 406, and a system bus 408

10

15

20

25

30

35

40

45

50

55

60

65

36

that couples various system components including the pro-
cessor 404 to the system memory 406.

The system bus 408 represents one or more of any of
several types of bus structures, including a memory bus or
memory controller, a peripheral bus, an accelerated graphics
port, and a processor or local bus using any of a variety of bus
architectures. By way of example, such architectures can
include an Industry Standard Architecture (ISA) bus, a Micro
Channel Architecture (MCA) bus, an Enhanced ISA (EISA)
bus, a Video Electronics Standards Association (VESA) local
bus, and a Peripheral Component Interconnects (PCI) bus
also known as a Mezzanine bus.

Computer 402 typically includes a variety of computer
readable media. Such media can be any available media that
is accessible by computer 402 and includes both volatile and
non-volatile media, removable and non-removable media.

The system memory 406 includes computer readable
media in the form of volatile memory, such as random access
memory (RAM) 410, and/or non-volatile memory, such as
read only memory (ROM) 412. A basic input/output system
(BIOS) 414, containing the basic routines that help to transfer
information between elements within computer 402, such as
during start-up, is stored in ROM 412. RAM 410 typically
contains data and/or program modules that are immediately
accessible to and/or presently operated on by the processing
unit 404.

Computer 402 may also include other removable/non-re-
movable, volatile/non-volatile computer storage media. By
way of example, FIG. 12 illustrates a hard disk drive 416 for
reading from and writing to a non-removable, non-volatile
magnetic media (not shown), a magnetic disk drive 418 for
reading from and writing to a removable, non-volatile mag-
netic disk 420 (e.g., a “floppy disk™), and an optical disk drive
422 for reading from and/or writing to a removable, non-
volatile optical disk 424 such as a CD-ROM, DVD-ROM, or
other optical media. The hard disk drive 416, magnetic disk
drive 418, and optical disk drive 422 are each connected to the
system bus 408 by one or more data media interfaces 426.
Alternatively, the hard disk drive 416, magnetic disk drive
418, and optical disk drive 422 can be connected to the system
bus 408 by one or more interfaces (not shown).

The disk drives and their associated computer-readable
media provide non-volatile storage of computer readable
instructions, data structures, program modules, and other data
for computer 402. Although the example illustrates a hard
disk 416, a removable magnetic disk 420, and a removable
optical disk 424, it is to be appreciated that other types of
computer readable media which can store data that is acces-
sible by a computer, such as magnetic cassettes or other
magnetic storage devices, flash memory cards, CD-ROM,
digital versatile disks (DVD) or other optical storage, random
access memories (RAM), read only memories (ROM), elec-
trically erasable programmable read-only memory (EE-
PROM), and the like, can also be utilized to implement the
exemplary computing system and environment.

Any number of program modules can be stored on the hard
disk 416, magnetic disk 420, optical disk 424, ROM 412,
and/or RAM 410, including by way of example, an operating
system 426, one or more application programs 428, other
program modules 430, and program data 432. Each of such
operating system 426, one or more application programs 428,
other program modules 430, and program data 432 (or some
combination thereof) may implement all or part of the resi-
dent components that support the distributed file system.

A user can enter commands and information into computer
402 via input devices such as a keyboard 434 and a pointing
device 436 (e.g., a “mouse”). Other input devices 438 (not

US 9,183,406 B2

37

shown specifically) may include a microphone, joystick,
game pad, satellite dish, serial port, scanner, and/or the like.
These and other input devices are connected to the processing
unit 404 via input/output interfaces 440 that are coupled to the
system bus 408, but may be connected by other interface and
bus structures, such as a parallel port, game port, or a univer-
sal serial bus (USB).

A monitor 442 or other type of display device can also be
connected to the system bus 408 via an interface, such as a
video adapter 444. In addition to the monitor 442, other
output peripheral devices can include components such as
speakers (not shown) and a printer 446 which can be con-
nected to computer 402 via the input/output interfaces 440.

Computer 402 can operate in a networked environment
using logical connections to one or more remote computers,
such as a remote computing device 448. By way of example,
the remote computing device 448 can be a personal computer,
portable computer, a server, a router, a network computer, a
peer device or other common network node, and the like. The
remote computing device 448 is illustrated as a portable com-
puter that can include many or all of the elements and features
described herein relative to computer 402.

Logical connections between computer 402 and the remote
computer 448 are depicted as a local area network (LAN) 450
and a general wide area network (WAN) 452. Such network-
ing environments are commonplace in offices, enterprise-
wide computer networks, intranets, and the Internet.

When implemented in a LAN networking environment, the
computer 402 is connected to a local network 450 via a
network interface or adapter 454. When implemented in a
WAN networking environment, the computer 402 typically
includes a modem 456 or other means for establishing com-
munications over the wide network 452. The modem 456,
which can be internal or external to computer 402, can be
connected to the system bus 408 via the input/output inter-
faces 440 or other appropriate mechanisms. It is to be appre-
ciated that the illustrated network connections are exemplary
and that other means of establishing communication link(s)
between the computers 402 and 448 can be employed.

In a networked environment, such as that illustrated with
computing environment 400, program modules depicted rela-
tive to the computer 402, or portions thereof, may be stored in
a remote memory storage device. By way of example, remote
application programs 458 reside on a memory device of
remote computer 448. For purposes of illustration, applica-
tion programs and other executable program components
such as the operating system are illustrated herein as discrete
blocks, although it is recognized that such programs and
components reside at various times in different storage com-
ponents of the computing device 402, and are executed by the
data processor(s) of the computer.

Various modules and techniques may be described herein
in the general context of computer-executable instructions,
such as program modules, executed by one or more comput-
ers or other devices. Generally, program modules include
routines, programs, objects, components, data structures, etc.
that perform particular tasks or implement particular abstract
data types. Typically, the functionality of the program mod-
ules may be combined or distributed as desired in various
embodiments.

An implementation of these modules and techniques may
be stored on or transmitted across some form of computer
readable media. Computer readable media can be any avail-
able media that can be accessed by a computer. By way of
example, and not limitation, computer readable media may
comprise “computer storage media” and “communications
media”

25

30

35

40

45

60

38

“Computer storage media” includes volatile and non-vola-
tile, removable and non-removable media implemented in
any method or technology for storage of information such as
computer readable instructions, data structures, program
modules, or other data. Computer storage media includes, but
is not limited to, RAM, ROM, EEPROM, flash memory or
other memory technology, CD-ROM, digital versatile disks
(DVD) or other optical storage, magnetic cassettes, magnetic
tape, magnetic disk storage or other magnetic storage devices,
or any other medium which can be used to store the desired
information and which can be accessed by a computer.

“Communication media” typically embodies computer
readable instructions, data structures, program modules, or
other data in a modulated data signal, such as carrier wave or
other transport mechanism. Communication media also
includes any information delivery media. The term “modu-
lated data signal” means a signal that has one or more of its
characteristics set or changed in such a manner as to encode
information in the signal. By way of example, and not limi-
tation, communication media includes wired media such as a
wired network or direct-wired connection, and wireless
media such as acoustic, RF, infrared, and other wireless
media. Combinations of any of the above are also included
within the scope of computer readable media.

Although the description above uses language that is spe-
cific to structural features and/or methodological acts, it is to
be understood that the invention defined in the appended
claims is not limited to the specific features or acts described.
Rather, the specific features and acts are disclosed as exem-
plary forms of implementing the invention.

The invention claimed is:

1. A method comprising:

obtaining a pair of inputs to be encrypted, the pair of inputs

including data to be sealed and one or more conditions
that are to be satisfied in order for the data to be unsealed;
and

encrypting by a first device the pair of inputs using public

key encryption and a same public key of a public/private
key pair, the encrypting generating a ciphertext that
includes both the encrypted data and the encrypted one
or more conditions, wherein one of the one or more
conditions comprises a time constraint for when the data
can be unsealed, the time constraint comprising particu-
lar days of the week during which the data can be
unsealed, and wherein the data is not unsealed if the one
or more conditions are not satisfied.

2. A method as recited in claim 1, wherein the data com-
prises a cryptographic key.

3. A method as recited in claim 1, wherein obtaining the
data comprises receiving the data as part of a PKSeal opera-
tion.

4. A method as recited in claim 1, wherein the time con-
straint further comprises a particular time of day during
which the data can be unsealed.

5. A method as recited in claim 1, the public key compris-
ing a public key of a guard that is intended to be able to
decrypt the ciphertext.

6. A method as recited in claim 5, the guard comprising a
component implemented on a second device that is different
than the first device.

7. A method as recited in claim 5, the obtaining comprising
obtaining the pair of inputs from a component of the first
device implemented in an operating system layer on the first
device, and the encrypting comprising encrypting the pair of
inputs by a component implemented in a basic input/output
system layer on the first device.

US 9,183,406 B2

39

8. A method as recited in claim 5, the guard comprising a
component implemented in a hardware layer of the first
device, the obtaining comprising obtaining, by the guard, the
pair of inputs from a component of the first device imple-
mented in a basic input/output system layer on the first device,
and the encrypting comprising encrypting the pair of inputs
by the guard.

9. A computing device having one or more components
implemented at least in part in hardware and that performs
acts comprising:

invoking, in the computing device, an operation to seal

data; and

receiving, in response to invoking the operation, a cipher-

text including both encrypted data and encrypted one or
more conditions that are to be satisfied in order for the
data to be unsealed, the encrypted data as well as the
encrypted one or more conditions having been generated
by encrypting a pair of inputs including both data and
one or more conditions using a same public key of a
public/private key pair, wherein one of the one or more
conditions comprises a time constraint identifying par-
ticular days of the week during which the data can be
unsealed, wherein the data is not unsealed if the one or
more conditions are not satisfied, and wherein the data
and the one or more conditions are encrypted using
public key encryption.

10. A computing device as recited in claim 9, wherein the
operation comprises a PKSeal operation.

11. A computing device as recited in claim 9, wherein
invoking the operation comprises passing the data as an input
to the operation.

12. A computing device as recited in claim 9, wherein
invoking the operation comprises passing at least one of the
one or more conditions as an input to the operation.

5

10

15

20

25

30

40

13. A computing device as recited in claim 9, wherein the
data comprises a cryptographic key.

14. A computing device as recited in claim 9, wherein the
time constraint further comprises a particular time of day
during which the data can be unsealed.

15. A method comprising:

invoking, in a device, an operation to have ciphertext

decrypted; and

receiving, in response to invoking the operation, decrypted

data from the ciphertext only if an encrypted one or more
conditions included in the ciphertext are satisfied, the
encrypted data as well as the encrypted one or more
conditions in the ciphertext having been decrypted using
a same private key of a public/private key pair, wherein
the one or more conditions comprises a time constraint
for when the data can be unsealed, wherein the one or
more conditions are satisfied only if a current day of the
week is one of one or more particular days of the week
identified by the time constraint, and wherein the cipher-
text is decrypted using public key decryption.

16. A method as recited in claim 15, wherein the operation
comprises a PKUnseal operation.

17. A method as recited in claim 15, wherein invoking the
operation comprises passing the ciphertext as an input to the
operation.

18. A method as recited in claim 15, wherein invoking the
operation comprises passing a pointer to the ciphertext as an
input to the operation.

19. A method as recited in claim 15, wherein the data
comprises a cryptographic key.

20. A method as recited in claim 15, wherein the time
constraint further comprises a particular time of day during
which the data can be unsealed.

#* #* #* #* #*

